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Abstract

This online appendix provides the following materials. Section S1 provides a necessary and
sufficient condition for complete learning within power-tail DGPs. Section S2 provides some
conditions that are close to necessary and sufficient for information cascades. Sections S3 and
S4 discuss multiple actions and multiple states. Section S6 discusses an alternative updating
rules—α-maximum likelihood rule. Section S7 discusses an extension in which individuals face
ambiguity about the network structure.
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S1 Conditions for Complete Learning

This section presents a necessary and sufficient condition for complete learning within the class
of DGPs that have power tails. For simplicity, I assume that all signals are i.i.d. and the true DGP
is F .

Definition S1. A DGP F has a power tail if there exists some α > 0 such that F 0 (x) = O (xα)

as x → 0. The power of F , denoted by P (F ), is defined to be α.

A DGP has a power tail if it can be approximated by a power function when x is close to 0.
It is easy to see that a power-tail DGP is unbounded. The power provides an intuitive measure
of informativeness. If F has a larger power, it means that its tails are thinner, so the DGP is less
“informative” . This section focuses on the power-tail models and imposes the following assumptions.

Assumption S1. F has a power tail, and F0 only contains DGPs with power tails.

Assumption S2. F0 contains finitely many DGPs, and every DGP has a different power and is
differentiable.

Assumption S1 says that the true DGP has a power tail, and individuals only perceive DGPs
with power tails. Assumption S2 is imposed for simplicity in analysis and can be relaxed. Theorem
S1 provides a necessary and sufficient condition for complete learning under these two assumptions.

Theorem S1. Under Assumptions S1 and S2, complete learning occurs if and only if F0 satisfies

(i) for all F ∈ F0, we have P (F ) ≥ P
(
F
)
, and

(ii) there exists some F ∈ F0 such that P (F ) < P
(
F
)
+ 1.

Theorem S1 says that to establish complete learning, we need to impose restrictions from two
directions. On one hand, all perceived DGPs cannot be too informative: Their power must be higher
than the power of the true DGP. On the other hand, some perceived DGP has to be adequately
informative in the sense that its power does not exceed that of the true model by 1. Before explaining
the intuition, let’s see what will happen if the conditions in Theorem S1 are violated.

Corollary S1. Under Assumptions S1 and S2, (i) if there exists some F ∈ F0 such that P (F ) <

P
(
F
)
, an incorrect herd occurs with P∗-strictly positive probability; (ii) if for all F ∈ F0, P (F ) ≥

P
(
F
)
+ 1, actions do not converge P∗-almost surely.

First, when individuals perceive some highly informative DGP, an incorrect herd occurs with
a positive probability. The mechanism has been explained in the paper. Second, when all models
considered by individuals are inadequately informative, actions will not converge. This comes from
the fact that if individuals underestimate predecessors’ informativeness, they are more likely to
break a herd, so the society may end up reaching no consensus. Corollary S1 implies that to
achieve complete learning, we must exclude two sources of incomplete learning—incorrect herding
and action non-convergence. To prevent incorrect herding, F0 must not contain highly informative
DGPs, which correspond to Theorem S1 (i). To prevent action non-convergence, F0 must not only
contain DGPs that are too uninformative, which corresponds to Theorem S1 (ii).
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S2 Conditions for Information Cascades

This section further provides two conditions which are close to necessary and sufficient for information
cascades when signals are bounded. Proposition S1 provides a necessary and sufficient condition
for a cascade to occur under some non-trivial prior. Proposition S2 provides a necessary and
sufficient condition for the posterior monotonicity property, which is a highly relevant concept for
information cascade. Both conditions employ a modified version of the hazard ratio in Herrera and
Hörner (2012), which I introduce below.

Definition S2. Denote by hθF (x) ≡ fθ(x)
1−F θ(x)

and by HF (x) ≡ h1F (x) /h0F (x), where HF (x) is
referred to as the hazard ratio at x under F . For a model set F0, denote by

HF0 (x) ≡
√

sup
F∈F0

HF (x) · inf
F∈F0

HF (x),

which is referred to as the average hazard ratio at x under F0.

For convenience, I impose the following assumption.

Assumption S3. F0 contains finitely many models. Every model in F0 is continuous and admits
a full-support density function on [1/γ, γ].

Following proposition provides a necessary and sufficient condition for an information cascade
to occur under some prior l0 in the non-cascade region.

Proposition S1. An information cascade occurs with P∗-strictly positive probability for some prior
r0 ∈ (1/γ, γ) if and only if F0 satisfies

HF0 (x) ≥ γ or HF0 (x) ≤ 1/γ

for some x ∈ (1/γ, γ).

Proof. Equivalently, we need to show that ri+1 enters the cascade set for some ri ∈ (1/γ, γ). By
definition, when ai = 1

ri+1 =

√
max
F∈F0

1− F 1 (1/ri)

1− F 0 (1/ri)
× min

F∈F0

1− F 1 (1/ri)

1− F 0 (1/ri)
× ri

=

√
max
F∈F0

1− F 1 (1/ri)

1− F 0 (1/ri)
× min

F∈F0

1− F 1 (1/ri)

1− F 0 (1/ri)
× f0 (1/ri)

f1 (1/ri)
=

1

HF0 (1/ri)
.

When ai = 0, we have

ri+1 =

√
max
F∈F0

F 1 (1/ri)

F 0 (1/ri)
× min

F∈F0

F 1 (1/ri)

F 0 (1/ri)
× ri

=

√
max
F∈F0

1− F 0 (ri)

1− F 1 (ri)
× min

F∈F0

1− F 0 (ri)

1− F 1 (ri)
× f1 (ri)

f0 (ri)
= HF0 (ri) ,
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Figure 1: Linear Utility Functions

where the second equality employs the symmetry of signals.1 The proposition then follows directly.

In addition to this condition, I then provide a necessary and sufficient condition for a closely
related concept— posterior monotonicity, which means that after any observation, the posterior
is monotonically increasing w.r.t. the prior. This concept is important in the cascade literature
because it provides a sufficient condition for information cascades not to occur. Smith et al. (2021)
showed that posterior monotonicity is equivalent to the log-concavity of the signal distribution.
When the action space is binary, the condition is equivalent to the increasing hazard ratio (and
decreasing failure ratio) in Herrera and Hörner (2012). Under ambiguity, we have a similar condition
as follows.

Proposition S2. ri+1 is strictly increasing in ri if and only if HF0 (x) is a strictly increasing
function in (1/γ, γ).

Proof. It follows directly from the proof of Proposition S1.

Proposition S2 says the the increasing average hazard ratio property (IAHRP) is a necessary
and sufficient condition for the posterior average likelihood ratio to be increasing w.r.t. to the prior
average likelihood ratio. If the IAHRP holds, ri is trapped in the non-cascade set, so an information
cascade will not occur. In other words, for an information cascade to occur, the IAHRP must be
violated, which provides a necessary condition for information cascades.

S3 Multiple Actions

The paper’s results can be extended to the multiple-action space. Furthermore, this section finds
that under sufficient ambiguity, (i) at most two actions will be chosen in the limit, and (ii) these
two actions must be symmetric in some sense. Therefore, the binary and symmetric action space is
in some sense W.L.O.G..

1Without the symmetry, we need introduce another concept—the failure ratio—to characterize beliefs after ai = 0.
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S3.1 Linear Utility Function

Suppose that the action space is A =
{
a1, ..., ak

}
⊂ [0, 1]. First consider a simple case where the

utility function is linear in a, that is,

u (a, θ) =

a θ = 1

1− a θ = 0
.

Suppose that (i) individuals have MEU preference and consider all DGPs as possible; (ii) signals
are i.i.d. according to F , and F is continuous and has full-support on (0,∞).2 The set of safe
actions is defined as

As ≡
{
a ∈ A : min {a, 1− a} ≥ min

{
a′, 1− a′

}
,∀a′ ∈ A

}
,

which is the set of actions with the highest minimum payoff. Geometrically, it stands for the set of
actions with the smallest distance to 1/2.

Proposition S3. limt→∞ P∗ (at ∈ As) = 1, that is, the society will only settle on As in the end.

The result comes from the fact that when ambiguity is adequately large, individuals will end
up holding highly ambiguous beliefs, which push them to only choose the safest actions to hedge
against ambiguity. It is easy to verify that As contains one or two actions, and when As contains
two actions, these two actions must be symmetric w.r.t. 1/2. Figure 1 provides an example in
which there are two safe actions, a2 and a3, and they are equally distanced from 1/2.

Remark S1. Note that similar result also holds when individuals are ambiguity-loving. For example,
when individuals have max-max EU preference, the society will settle on the actions with the
highest maximum payoff, Ah, where

Ah ≡
{
a ∈ A : max {a, 1− a} ≥ max

{
a′, 1− a′

}
, ∀a′ ∈ A

}
.

Geometrically, Ah means the actions with largest distance from 1/2, and it also contains at most
two actions. In Figure 1, Ah =

{
a1, a5

}
, so individuals will only choose either a1 or a5 in the limit.

S3.2 General Utility Functions

The result can be extended to general utility functions if we also allow for ambiguous priors. It
turns out that under sufficient ambiguity w.r.t. both information and states, the society will settle
on at most two actions in the end, and these two actions are symmetric in some sense.

From now on, I assume that: (i) individuals form a set of priors with the prior likelihood set
L0 = [1/R0, R0], where R0 > 1 measures the ambiguity about the true state; (ii) individuals consider
all possible DGPs on [1/γ, γ]. I impose the following regularity conditions.

2Note that here we assume that signals are unbounded, but the analysis can be extended to bounded signals as
in the next subsection.
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Figure 2: General Utility Functions

Assumption S4. (No Redundancy) For all a, a′ ∈ A with a′ ̸= a, u (a, θ) ̸= u (a′, θ) in at least one
state.

Assumption S5. (No Strictly Dominated Action) For all a ∈ A, there is no a′ ∈ A such that
u (a, θ) ≥ u (a′, θ) in both states, and the inequality is strict in at least one state.

The set of safe actions can be similarly defined as follows,

As =

{
a ∈ A : min

θ
u (a, θ) ≥ min

θ
u
(
a′, θ

)
,∀a′ ∈ A

}
.

Also, As contains at most two actions, and when |As| = 2, the payoff-minimizing states must be
different.

Proposition S4. There exists R ∈ R ∪ {+∞} such that

lim
t→∞

P∗ (at ∈ As) = 1,

for all R0 ≥ R, and we can find some R < ∞ when signals are bounded.

It shows that the society will settle on safe actions under sufficient prior ambiguity. Besides, safe
actions are also symmetric but in a weaker sense. In Figure 2, As =

{
a2, a3

}
and they are “lower

symmetric” w.r.t. the 45-degree line in the sense that: (i) the minimum utility levels are obtained
at different states, i.e., they are on different sides of the 45-degree line, and (ii) the minimum utility
levels are equal, i.e., u

(
a2, 1

)
= u

(
a3, 0

)
. Symmetrically, when individuals have max-max EU

preference, the set of limit actions, Ah =
{
a1, a5

}
, are “upper symmetric” w.r.t. the 45-degree line,

which means that the maximum utility levels are obtained at different states and must be equal.

I then characterize the equilibrium strategy. In the following, I assume that As contains two
elements (if As is a singleton, the equilibrium strategy becomes trivial in the limit). Further suppose
that As =

{
al, ah

}
, where al achieves its minimum utility at state 0, and ah achieves its minimum

utility at state 1.
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Proposition S5. (Equilibrium Strategy Multiple Actions) Let u = u
(
al, 0

)
= u

(
ah, 1

)
, ul =

u
(
al, 1

)
and uh = u

(
al, 0

)
. When R0 is sufficiently large, we have

ai = al

ai = ah
if λi

<

>

(
uh − ul

)
li +

√
(uh − ul)

2
l2i + 4 (ul − u) (uh − u) lili

2 (ul − u) lili
≡ Xi,

and the strategy at λi = Xi is determined by the tie-breaking rule.

We first notice that if al and ah are also “upper symmetric”, i.e., ul = uh, the equilibrium cutoff
becomes

Xi = 1/

√
lili,

which takes the exact same form as in the benchmark model. If they are not “upper symmetric”,
but individuals hold sufficiently ambiguous beliefs, i.e., when li is very large and li is very small, we
have

Xi ≈

√
uh − u

ul − u
/

√
lili,

which only differs from the previous characterization by a constant. As can be seen, the equilibrium
characterization in the binary-action case also serves as a good benchmark for multi-action situation
when there is sufficient ambiguity. Therefore, an information cascade also arises with probability 1
under sufficient ambiguity.

S4 Multiple States

When there are multiple states, the equilibrium becomes more difficult to characterize, but the key
insights still hold.3 This section shows that in a simple case how an information cascade can still
arise. Suppose that the state space Θ = {0, 1, ...,K}, and the action space A = Θ. Individuals
share a flat prior, π0 =

(
1

K+1 , ...,
1

K+1

)
. The utility function is

u (a, θ) =

1 a = θ

0 a ̸= θ
,

that is, individuals get a payoff of 1 if the action matches the true state and a payoff of 0 if otherwise.
Every individual has MEU preference and updates beliefs according to the full Bayesian rule. The
true DGP, Gi, satisfies that

dGi (s|θ)
dGi (s|θ′)

∈
[
1

γ
, γ

]
, ∀s ∈ S,

I then consider a specific class of perceptions and show that large ambiguity can produce cascades.
3Arieli and Mueller-Frank (2021) extended the SSLM to a general state and action space. Their paper focused on

correctly specified Bayesian agents, so the techniques cannot be applied here.
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Assumption S6. The set of perceived DGP G0 contains all DGP G that satisfies

dG (s|θ)
dG (s|θ′)

∈
[

1

Rγ
,Rγ

]
, ∀s ∈ S,

for some R ≥ 1.

When R gets larger, it corresponds to a higher degree of ambiguity. The following proposition
shows that under sufficient large ambiguity, an information cascade occurs almost surely.

Proposition S6. There exists R0 < ∞ such that an information cascade occurs P∗-almost surely
for all R ≥ R0.

Proof. Suppose that a1 = θ1. Then we have

dG1 (s1|θ1) /dG1

(
s1|θ′

)
≥ 1 ∀θ′ ∈ Θ.

From the perspective of individual 2, she will follow the first individual if

min
π∈Π2

∑
θ

π (θ)

π (θ′)
× dG2 (s2|θ)

dG2 (s2|θ′)
> min

π∈Π2

∑
θ

π (θ)

π (θ1)
× dG2 (s2|θ)

dG2 (s2|θ1)
. (1)

Notice that

L.H.S of (1) = min
π∈Π2

π (θ1)

π (θ′)
× dG2 (s2|θ1)

dG2 (s2|θ′)
+

∑
θ ̸=θ1,θ′

π (θ)

π (θ′)
× dG2 (s2|θ)

dG2 (s2|θ′)
+ 1

 ≥ dG2 (s2|θ1)
dG2 (s2|θ′)

+
K − 1

Rγ2
+ 1.

The inequality comes from that π(θ1)
π(θ) ≥ 1 and π(θ′)

π(θ) ≥ 1/Rγ for all π ∈ Π2. In addition, it can be
verified that the R.H.S. of (1)≤ K

R + 1. As such for sufficiently large R, the L.H.S. is greater than
the R.H.S. for all possible s2, so individual 2 will follow individual 1 immediately, and a cascade is
triggered.

S5 Heterogeneous Ambiguity

This section discusses how to extend the paper’s main results to heterogeneous ambiguity. Recall
that in the paper, individuals share a common set of models F0. This assumption implies two aspects
of homogeneity: (i) Individuals’ signal structures appear homogeneously ambiguous to others and
(ii) individuals are homogeneously ambiguous about others’ signal structures. Below, I discuss how
my results can be relaxed in these two directions.

S5.1 Individuals have heterogeneously ambiguous DGPs

Suppose instead that individuals’ DGPs are heterogeneously ambiguous. There are two types,
ti ∈ {H,L}. If individual i has type t, other individuals perceive that her DGP Fi ∈ F t. Suppose
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that FL ⊂ FH , so H-type individuals have more ambiguous DGPs; all types are commonly known.
I also assume that the distance between the i-th and i + 1-th t-type individuals is bounded by a
fixed constant for all i, t. This assumption guarantees that no type will vanish in the limit.

Proposition S7. When there is sufficient ambiguity for high-ambiguity individuals, e.g., when FH

satisfies the conditions in Theorem 2 in the paper, an information cascade occurs P∗-almost surely.

Proof. The proof of Theorem 2 shows that if FH satisfies the conditions in Theorem 2, there exists
some β > 1 such that ri will increase or decrease by a factor of β after a H-type individual’s action
if a cascade has not occurred. Because H-type individuals have bounded distance, we can find a
constant K < ∞ such that K identical actions can trigger a cascade. Following a similar argument,
we can establish the almost sure occurrence of a cascade.

Notice that the proposition imposes no restriction on the fraction of high-ambiguity individuals,
so an information cascade can emerge even when there are an ε-fraction of high-ambiguity individuals.4

Also, the proposition imposes no restriction on FL. If we take FL to be the true model, the
proposition further implies that an information cascade can arise even when a small fraction of
individuals have ambiguous DGPs, whereas the majority’s DGPs are commonly known.

S5.2 Individuals are heterogeneously ambiguous about others

Still suppose that there are two types, ti ∈ {H,L}, and that individuals with type t hold a belief
set F t about other DGPs, where FL ⊂ FH . Here, we can think of the L-type individuals as better
informed in the sense that they entertain a smaller set of possible DGPs about others.

Proposition S8. If both types of individuals are sufficiently ambiguous, i.e., when both FL and FH

satisfy the conditions in Theorem 2 in the paper, an information cascade occurs with a P∗-strictly
positive probability.

Proof. Let rti denote the average public likelihood ratio after history hi if individual i were of type t.
Theorem 2 implies that when both FL and FH are sufficiently large, both rHi and rLi will enter the
cascade set after finite number of identical actions, so ri must also enter the cascade set. Therefore,
an information cascade occurs with a strictly positive probability.

The proposition shows that qualitative result in the paper still holds—an information cascade
can occur under sufficient, but not necessarily homogeneous, ambiguity.

4For example, suppose that ti = H if i ∈ {1, n+ 1, 2n+ 1, 3n+ 1, ...}, and ti = L otherwise, where n is a positive

integer. The fraction of H-type individuals in the whole population is limk→∞

∑
i≤k 1{ti=H}

k
→ 1/n, which can be an

arbitrarily small number.
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S6 The α-Maximum Likelihood Rule

The occurrence of a cascade is not unique to the full Bayesian rule. This section discusses an
alternative updating rule—the α-maximum likelihood rule (α-MLE) as in Epstein and Schneider
(2007). The updating rule requires that

F−i | hi =

{
F−i : PF−i (hi|σ−i) ≥ α · sup

F−i∈F−i

PF−i (hi|σ−i)

}
where α ∈ [0, 1], F−i ≡ (F1, ..., Fi−1), and F−i | hi denotes the updated model set after history
hi. Under this updating rule, individuals only entertain the models that pass some likelihood test,
where α = 1 corresponds to the maximum likelihood updating, and α = 0 corresponds to the full
Bayesian updating.

Proposition S9. Suppose that F0 = F and signals are bounded. Under α-MLE, an information
cascade occurs with strictly positive probability for all α ∈ [0, 1).

Proof. By chain rule,

PF−i (hi) = PF−i (a1)PF−i (a2|a1) ...PF−i (ai−1|a1, a2, ..., ai−2)

Consider an action profile a1 = a2 = ... = ai−1 = 1, and denote by F ∗
−i =

(
F ∗
1 , ..., F

∗
i−1

)
∈

argmaxPF−i (hi); i.e., the DGPs that maximize the probability of history hi.5 With some abuse of
notation, define F−i ≡

(
F ∗
1 , ..., F

∗
i−2, Fi−1

)
. By definition, F−i ∈ F−i | hi if and only if PF−i (hi) ≥

α · PF ∗
−i

(hi), or equivalently,

PF−i (ai−1|hi−1) ≥ αPF ∗
−i

(ai−1|hi−1) = α,

which implies that

PF−i (ai−1|hi−1; θ = 0)PF−i (θ = 0|hi−1) + PF−i (ai−1|hi−1; θ = 1)PF−i (θ = 1|hi−1) ≥ α (2)

When hi−1 = {1, ..., 1}, we have PF−i (θ = 1|hi−1) ≥ PF−i (θ = 0|hi−1) for all F−i ∈ F−i; also, since
ai−1 = 1,we have PF−i (ai−1|hi−1; θ = 1) ≥ PF−i (ai−1|hi−1; θ = 0).6 As a consequence,

PF−i (ai−1|hi−1; θ = 0)PF−i (θ = 0|hi−1) + PF−i (ai−1|hi−1; θ = 1)PF−i (θ = 1|hi−1)

≥PF−i (ai−1|hi−1; θ = 0)
1

2
+ PF−i (ai−1|hi−1; θ = 1)

1

2
,

5The maximum exists because (i) PF∗
1
(a1) = 1

2
for all F1 continuous at 1, and (ii) if we let F ∗

2 = ... = F ∗
i−1 be

uninformative DGP, we have PF2 (a2|a1) = ... = PF−i (ai−1|a1, a2, ..., ai−2) = 1.
6The inequalities come from the equilibrium strategy and the fact that F 0(x) ≥ F 1(x) in Lemma A.1 of Smith

and Sørensen (2000)
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so inequality (2) holds if

PF−i (ai−1|hi−1; θ = 0)
1

2
+ PF−i (ai−1|hi−1; θ = 1)

1

2
≥ α (3)

Suppose that i ≥ 2 and there is no information cascade yet, i.e., ri ∈ (1, γ). Consider a discrete Fi

where supp (Fi) =
{

1
γ , 1, γ

}
. Let fθ

i be the p.m.f. of F θ
i . Suppose that f0

i (γ) = f1
i

(
1
γ

)
= p thus

f0
i

(
1
γ

)
= f1

i (γ) = pγ, where p ∈
[
0, 1

γ+1

]
. Since ri ∈ (1, γ), we have

PFi (ai|hi; 0) = 1− F 0(1/ri) = 1− pγ

PFi (ai|hi; 1) = 1− F 1(1/ri) = 1− p.

Then (3) implies p ≤ 2−2α
1+γ , so the Fi with p = 2−2α

1+γ belongs to F−i | hi. When α ∈ [0, 1), we have

ri+1

ri
=

1− pγ

1− p
> 1 for all ri ∈ (1, γ),

so an information cascade occurs after finite steps and hence with strictly positive probability.

Notice that a cascade may not occur at α = 1, the maximum likelihood updating (MLU). This
is because the MLU can lead to an “over-fitting problem”. Under the MLU, individuals can just
keep uninformative DGPs, because a herd occurs with probability 1 when all followers have no
information. As a consequence, beliefs stop updating after the first person during a herd, so an
information cascade usually does not occur.

S7 Ambiguity over the Network Structure

The discussion can be extended to ambiguous networks. This section shows that when individuals
are ambiguous about other people’s observation structures, and when the ambiguity is sufficiently
large, an information cascade occurs almost surely for all bounded signals.7

A network structure is denoted by G = (G1, G2, ...), where Gi ⊂ {1, ..., i− 1} represents the set
of individuals whose actions are observable to individual i. Individuals are located in a linear network
but are ambiguous about the network structure. Let G represents the set of all possible network
structures. Let G0 ⊂ G denote the set of network structures perceived by the society. Formally,
individual i believes that her predecessors’ observation set can be any (G1, ..., Gi−1) consistent with
G0. Signals are i.i.d. according to F , where F is continuous and has full support on [1/γ, γ] where
γ ∈ (1,∞). To emphasize the effect of network ambiguity, I assume that individuals correctly
understand F , i.e., there is no ambiguity about DGP.

Lemma S1. If G0 = G, an information cascade occurs P∗-almost surely.
7When signals are unbounded, information cascade is a very strong concept, and ambiguity over networks may

not lead to cascades independently. However, it is conceivable that ambiguous networks can still lead to incorrect
herding, so complete learning doesn’t hold.
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Figure 3: Ambiguous Networks

Note: The dashed curves represent the observation structure. In the first graph, individuals can only observe
actions from I = {1, 2, 3}. In the second graph, individuals can only observe actions from I = {1, 2}∪{4, 5}.

The lemma says that when individuals consider all networks as possible, an information cascade
will occur almost surely. Lemma S1 requires extreme ambiguity about the network, but we actually
need a weaker condition.

Definition S3. A network G = (G1, G2, ....) is bounded by K if there exists some K < ∞ such that
maxi,k {k : k ∈ Gi} ≤ K.

A network is bounded if only finite number of individuals are observable to the society. The
concept is illustrated in Figure 3. If individual i considers the network structure in Figure 3a, then
she finds it possible that her predecessors can only observe the first three individuals. Similarly, in
Figure 3b, her predecessors may only observe from {1, 2} and {4, 5}.

Proposition S10. There exists some K < ∞ such that if there exists some G ∈ G0 that is bounded
by K, then an information cascade occurs P∗-almost surely.

Proposition S10 says that if it is possible that all observations come from the first K individuals,
an information cascade will occur almost surely. To explain the intuition, let’s consider an extreme
case where individuals consider a network G with Gi = ∅ for all i. If G is the true network, every
individual observes no previous action, so all actions perfectly reflect private signals, and hence are
independent. In this case, the informativeness of each action will not diminish as the line grows, so
a cascade will take place after finite actions. Following the paper’s arguments, we can show that
the cascade force introduced by G can not be offset by other networks, so an information cascade
always occurs as long as individuals consider G as possible.

One may wonder if cascades occur only when individuals consider small networks, i.e., K is
small. The following corollary shows that a cascade can still occur even if individuals consider an
arbitrarily large network.

Corollary S2. Suppose that there is some G ∈ G0 under which the first K actions are publicly
observable, i.e.,

Gi = {1, 2, ...,K ∧ i} ∀i.

Then for all K < ∞, an information cascade occurs P∗-almost surely.
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It says that a cascade will occur almost surely as long as it is possible that the first finite number
of actions are publicly observable. Corollary S2 implies that non-cascade is not robust w.r.t. network
ambiguity in the following sense.

Example S1. Let GK be the network in Corollary S2, that is, the first K individuals are observable.
Suppose that individuals consider the following set of networks,

Gn =
{
GK : K ≥ n

}
,

which means that at least the first n individuals are publicly observable. Notice that Gn ⊃ Gn+1 ⊃
Gn+2 · · · , and as n → ∞, Gn is approaching the linear network {G∞}. When n = ∞, the occurrence
of an information cascade depends on the properties of F . However, for all n < ∞, an information
cascade occurs for all possible bounded F s. It provides another example in which the non-cascade
results seem extreme in some sense.
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A Appendix: Omitted Proofs in the Supplementary Materials

A.1 Proof of Theorem S1

I first introduce the notion of local instability as below.

Definition S4. State 0 (or state 1) is locally unstable if there is some r ∈ R++ (or R ∈ R++) such
that P∗

r0 (ri > r for some i) = 1 (or P∗
r0 (ri < R for some i) = 1) for all prior Π0 with r0 sufficiently

small (or sufficiently large).

In other words, state θ are locally unstable if posteriors will escape from a small neighborhood
around δθ almost surely, where beliefs are described by the average likelihood ratio. The notion
of local stability is defined in the Appendix to the paper, which says that beliefs will trap in the
neighborhood with a strictly positive probability, and it is omitted here. We have the following
lemmas.

Lemma S2. Complete learning occurs if and only if ri → 0 with probability 1.

Proof. First, during complete learning, there must be a herd of action 0 after some point, so ri → 0

with probability 1. Second, if ri → 0 with probability 1, a herd of action 0 will eventually occur
from Lemma 5 in the paper.

Lemma S3. Complete learning occurs if 0 is locally stable and state 1 is locally unstable.

Proof. Since state 1 is locally unstable, beliefs will enter {ri < R} infinitely many often. Whenever
ri < R, we can find a finite K such that K consecutive action 0 lead to ri < r. Since state 0 is
locally stable, once ri < r, we have ri → 0 with a positive probability. Therefore, the probability of
ri → 0 is greater than some positive constant so for all history hi, so complete learning occurs by
the Levy’s 0-1 Law.

We then have the following proposition.

Proposition S11. Under Assumptions S1 and S2, we have:
(a) if for all F ∈ F0, P (F ) ≥ P

(
F
)
, state 1 is locally unstable;

(b) if there exists some F ∈ F0 such that P (F ) < P
(
F
)
, state 1 is locally stable;

(c) if for all F ∈ F0, P (F ) ≥ P
(
F
)
+ 1, state 0 is locally unstable;

(d) if there exists some F ∈ F0 such that P (F ) < P
(
F
)
+ 1, state 0 is locally stable.

For simplicity, I denote by α := P
(
F
)
, αmax := maxF∈F0 P (F ) and αmin := minF∈F0 P (F ).

The DGPs with the maximum and minimum power are denoted by Fmax and Fmin.

Proof. Proof of Proposition S11 (a): Given r0, the probability of a herd of action 1 is

lim
i→∞

P∗
r0 (a1 = a2 = ...ai = 1) =

∞∏
i=1

P∗
r0 (ai = 1|hi) =

∞∏
i=1

[
1− F

0
(
1

ri

)]
,
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where ri represents the average likelihood ratio after hi = (1, 1, ..., 1). The probability is equal to
0 if and only if

∑
F

0
(

1
ri

)
= ∞, or equivalently,

∑ 1
rαi

= ∞. Note that {ri} is determined by the
following dynamics

ri+1 = ri ×

√
max
F∈F0

1− F 1 (1/ri)

1− F 0 (1/ri)
× min

F∈F0

1− F 1 (1/ri)

1− F 0 (1/ri)
.

When r0 is sufficiently large, 1−F 1(1/ri)
1−F 0(1/ri)

∼ 1+F 0 (1/ri) for all i, so its maximum is obtained at Fmin

and it minimum is obtained at Fmax. Therefore, when r0 is sufficiently large,

ri+1 = ri ×

√
1− F 1

min (1/ri)

1− F 0
min (1/ri)

× 1− F 1
max (1/ri)

1− F 0
max (1/ri)

≤ ri ×
1− F 1

min (1/ri)

1− F 0
min (1/ri)

.

By the definition of Fmin, we have 1−F 1
min(1/ri)

1−F 0
min(1/ri)

∼ 1 + Cmin × 1
r
αmin
i

, for some constant Cmin > 0.

Suppose that for all F ∈ F0, we have P (F ) ≥ P
(
F
)
, that is, αmin ≥ α. Then,

lim
r→∞

1−F 1
min(1/r)

1−F 0
min(1/r)

− 1(
1 + 2αCmin

rα

)1/α
− 1

= lim
r→∞

1−F 1
min(1/r)

1−F 0
min(1/r)

− 1

2αCmin

rα

×
2αCmin

rα(
1 + 2αCmin

rα

)1/α
− 1

= lim
r→∞

Cmin × 1
rαmin

2αCmin

rα

× α

=
1

2
× lim

r→∞

1

rαmin−α
=

0 αmin > α

1
2 αmin = α

< 1,

so 1−F 1
min(1/ri)

1−F 0
min(1/ri)

<
(
1 + 2αCmin

rαi

)1/α
. Therefore, for all i ≥ 0,

ri+1 <

(
1 +

2αCmin

rαi

)1/α

× ri =
(
rαi + 2αCmin

)1/α
ri+1 <

(
rαi+1 + 2αC

)1/α
<

(
rαi + 2αCmin × 2

)1/α
...

ri+t <
(
rαi + 2αCmin × t

)1/α
.

As a consequence, when r0 is sufficiently large,

∞∑
i=1

1

rαi
>

∞∑
i=1

1

rα0 + 2αC × i
= ∞,

so a herd of action 1 occurs with probability 0. This property holds for all r0 ∈ R++, so state 1 is
unstable.
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Proof of Proposition S11 (b)

To show that state 1 is locally stable, we need to show that the probability of an action-1 herd is
greater than some ε > 0 when r0 is large. Recall that

P∗
r0 (H1) = lim

i→∞
P∗
r0 (a1 = a2 = ...ai = 1) =

∞∏
i=1

[
1− F

0
(
1

ri

)]
.

In order to establish local stability, we need to find a uniform lower bound of the probability on the
R.H.S. for all large r0. Suppose that F

0
(x) ∼C × xα for some constant C > 0. On one hand, we

can find a sufficiently large R such that whenever r0 ≥ R, we have F
0
(1/ri)

C×(1/ri)
α ∈ [1− ε1, 1 + ε1] for

some ε1 > 0, so

P∗
r0 (H1) =

∞∏
i=1

[
1− F 0

(
1

ri

)]
≥

∞∏
i=1

[
1− (1 + ε1)× C × 1

rαi

]
. (4)

Here, we also want R to be sufficiently large such that the infinite product on the R.H.S. is strictly
positive. On the other hand, recall that

ri+1 = ri ×

√
1− F 1

min (1/ri)

1− F 0
min (1/ri)

× 1− F 1
max (1/ri)

1− F 0
max (1/ri)

.

Define β = (1− ε) Cmin×αmin
2 for some small ε > 0, then we have

lim
r→∞

√
1−F 1

min(1/ri)

1−F 0
min(1/ri)

× 1−F 1
max(1/ri)

1−F 0
max(1/ri)

− 1(
1 + β

rαmin

)1/αmin

− 1

= lim
r→∞

√
1−F 1

min(1/ri)

1−F 0
min(1/ri)

× 1−F 1
max(1/ri)

1−F 0
max(1/ri)

− 1√
1−F 1

min(1/ri)

1−F 0
min(1/ri)

− 1

× lim
r→∞

√
1−F 1

min(1/ri)

1−F 0
min(1/ri)

− 1(
1 + β

rαmin

)1/αmin

− 1

= 1× lim
r→∞

√
1−F 1

min(1/ri)

1−F 0
min(1/ri)

− 1(
1 + β

rαmin

)1/αmin

− 1

= lim
r→∞

√
1−F 1

min(1/ri)

1−F 0
min(1/ri)

− 1

β
rαmin

× lim
r→∞

β
rαmin(

1 + β
rαmin

)1/αmin

− 1

=
Cmin × αmin

2β
=

1

1− ε
> 1.

When R sufficiently large, we have

ri+1 ≥ ri ×
(
1 +

β

rαmin
i

)1/αmin

= (rαmin
i + β)1/αmin ⇒ ri ≥ (rαmin

0 + β × i)1/αmin . (5)
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Combining (4) and (5), we obtain

P∗
r0 (H1) ≥

∞∏
i=1

[
1− (1 + ε1)× C × 1

rαi

]

≥
∞∏
i=1

[
1− (1 + ε1)× C × 1

(rαmin
0 + β × i)α/αmin

]

≥
∞∏
i=1

[
1− (1 + ε1)× C × 1

(Rαmin + β × i)α/αmin

]

for all r0 ≥ R. Again, R is chosen to be sufficiently large such that each term is strictly positive.
Suppose that there exists some F ∈ F0 such that P (F ) < P

(
F
)
, which implies that αmin < α, so

∑ 1

(Rαmin + β × i)α/αmin
< ∞,

which further implies that

P∗
r0 (H1) ≥

∞∏
i=1

[
1− (1 + ε1)× C × 1

(Rαmin + β × i)α/αmin

]
=: δ > 0,

for all r0 ≥ R. In other words, the probability of an action-1 herd is greater than δ > 0, which
proves that state 1 is locally stable.

Proof of Proposition S11 (c) & (d)

The proofs of Proposition S11 (c) and (d) are almost identical to the proofs of (a) and (b). The
only difference is that the cutoff value becomes P

(
F
)
+ 1. To see why we have a different cutoff

value, note that the probability of an action-0 herd is

P∗
r0 (H0) = lim

i→∞
P∗
r0 (a1 = a2 = ...ai = 0) =

∞∏
i=1

F
0
(
1

ri

)
=

∞∏
i=1

[
1− F

1
(ri)

]
,

where ri denotes the average likelihood ratio after hi = (0, ..., 0). An action-0 herd occurs with a
strictly positive probability if and only if

∑
F

1
(ri) < ∞. During a herd of action 0, we have ri → 0;

besides, it can be verified that F
1
(x) = O

(
xα+1

)
as x → 0.8 As a consequence, an action-0 herd

occurs with a strictly positive probability if and only if
∑

rα+1
i < ∞. The rest of the proofs are

exactly symmetric to those of (a) and (b).

8Recall that F
0
(x) ∼ C × xα as x → 0, so

lim
x→0

F
1
(x)

xα+1
= lim

x→0

f
1
(x)

(α+ 1)xα
=

1

α+ 1
lim
x→0

f
0
(x)

xα−1
=

α

α+ 1
lim
x→0

F
0
(x)

xα
=

α

α+ 1
C,

hence F
1
(x) = O

(
xα+1

)
as x → 0.

18



From Lemma S3, Proposition S11 implies Theorem S1, so the theorem is proved.

A.2 Proof of Proposition S3

Without loss of generality, I index all actions in the descending order, i.e., a1 > a2 > ... > ak. The
proof focuses on the situation in which ak < 1/2 < a1 because the case in which all actions belong
to one side of 1/2 is a simple extension of this benchmark. I define the following four actions,

aL = ak, aH = a1, al = max {a ∈ A : a ≤ 1/2} , and ah = min {a ∈ A : a > 1/2} .

Also, suppose that these four actions are different.9

Lemma S4. For all i ≥ 1, individual i only will a.s. choose from A∗ =
{
aL, aH , al, ah

}
.

Proof. Let Vi (a) denote the minimum expected utility of individual i if she chose action a. By
definition,

Vi (a) =


λili

1+λili
a+ 1

1+λili
(1− a) a ∈

[
ah, aH

]
λili

1+λili
a+ 1

1+λili
(1− a) a ∈

[
aL, al

] . (6)

Notice that Vi (a) is a piecewise linear function, so the optimal a can be only obtained at the cutoff
points, A∗.

Lemma S5. All actions in A∗\As will be chosen with probability 0 in the limit.

Proof. First, it is easy to verify that the first person will only choose aL or aH , and a1 =

aL if λ1 < 1

aH if λ1 > 1
.

I assume that a1 = aH WLOG. There are three possible cases: (i) As =
{
al
}
, (ii) As =

{
ah

}
, and

(iii) As =
{
al, ah

}
. The analysis for them is parallel, so the discussion focuses on the case As =

{
al
}
,

i.e., al + ah > 1/2. Because a1 = aH , we have l2 = ∞ and l2 = 1. Substituting l2 and l2 into (6),
individual 2’s optimal choice is

a2 =


aH λ2 > 1

ah λ2 ∈ (λ∗
2, 1)

al λ2 < λ∗
2

.

In the expression, λ∗
2 is the cutoff signal such that individual 2 is indifferent between ah and al, so

it satisfies
al =

λ∗
2

1 + λ∗
2

ah +
1

1 + λ∗
2

(
1− ah

)
.

Note that al < 1/2, so we must have λ∗
2 < 1. Let pi denote the probability of individual i choosing

9It is possible that some actions may overlap. For example, if there is only one action below 1/2, then al = aL.
The analysis can be easily extended to incorporate this case
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al, so p2 = F
0
(λ∗

2). Suppose that a2 = al, then

l3 = l2 × inf
F

F 1 (λ∗
2)

F 0 (λ∗
2)

= ∞× λ∗
2 = ∞ and l3 = l2 × inf

F

F 1 (λ∗
2)

F 0 (λ∗
2)

= 0.

Substituting them into the utility functions, we get

V3

(
aL

)
= aL, V3

(
al
)
= al, V3

(
ah

)
= 1− ah, and V3

(
aH

)
= 1− aH ,

so individual 3 will choose action al regardless of his private signal, and hence p3 = 1, and an
information cascade on al starts. Therefore, Lemma S5 holds. Suppose that a2 = ah, then

l3 = ∞ and l3 = l2 × inf
F

F 1 (1)− F 1 (λ∗
2)

F 0 (1)− F 0 (λ∗
2)

≤ l2 = 1.

From the perspective of individual 3, his optimal choice is

a2 =


aH λ2 > 1/l3

ah λ2 ∈ (λ∗
3, 1/l3)

al λ2 < λ∗
3

,

where λ∗
3 satisfies

al =
λ∗
3l3

1 + λ∗
3l3

ah +
1

1 + λ∗
3l3

(
1− ah

)
,

so λ∗
3 = λ∗

2/l3 ≥ λ∗
2. The probability of individual 3 choosing al is p3 = F

0
(λ∗

3) ≥ p2. Suppose that
a2 = aH , then we still have l3 = ∞ and l3 = 1, so individual 3 will act as if he is individual 2, and
hence p3 = p2. To summarize, we have p3 ≥ p2 regardless of individual 2’s action. Analogously,
we have pi ≥ p2 for all i ≥ 2. Levy’s 0-1 Law implies that al will almost surely be taken by some
individual i. Once it is taken, li+1 becomes 0 and an information cascade of action al is triggered,
so individuals only choose from As.

A.3 Proof of Proposition S4

We can write down individual i’s minimum EU utility function,

Vi (a) =


λili

1+λili
u (a, 1) + 1

1+λili
u (a, 0) if u (a, 0) > u (a, 1)

λili
1+λili

u (a, 1) + 1
1+λili

u (a, 0) if u (a, 1) > u (a, 0)
.

For individual 1, we have
V1 (a) → min

θ∈{0,1}
u (a, θ) as R0 → ∞,
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so we can find R0 sufficiently large such that

a1 ∈ argmax
a∈A

[
min
θ

u (a, θ)

]
= As

for all possible λ1s. When λ1 is bounded, the threshold R0 is also bounded. When As is a singleton,
Proposition S4 is trivially true. Suppose that As contains two actions, al and ah, and that the
minimum utility is obtained in state 0 and 1 respectively. It can be verified that

a1 = al

a1 = ah
if λ1

<

>

(
uh − ul

)
l0 +

√
(uh − ul)

2
l20 + 4 (ul − u) (uh − u) l0l0

2 (ul − u) l0l0
≡ X0,

where u = u
(
al, 0

)
= u

(
ah, 1

)
, ul = u

(
al, 1

)
and uh = u

(
al, 0

)
.

Lemma S6. When R0 is sufficiently large,

li ≤ l0 × 2 exp

∣∣∣∣∣∣log
√

uh − u

ul − u

∣∣∣∣∣∣ and li ≥ l0 ×
1

2
exp

−

∣∣∣∣∣∣log
√

uh − u

ul − u

∣∣∣∣∣∣
 .

Proof. Denote by ρhl ≡
√

uh−u
ul−u

. W.L.O.G., suppose that ρhl ≥ 1. First, suppose that ρhl ∈ (1, γ).
Note that X0 → ρhl as R0 → ∞, so individual 1 will choose ah if her signal λ1 > X0 ≈ ρhl and
choose al otherwise (except for the tie-case). Suppose that a1 = ah, then we have

l2 = l1 × sup
F

1− F 1 (X0)

1− F 0 (X0)
= γ × l0

l2 = l1 × inf
F

1− F 1 (X0)

1− F 0 (X0)
= X0 × l0,

and for sufficiently large R0,

X2 ≈

√
uh − u

ul − u
× 1√

l2l2

≤ ρhl√
γX0

1√
l2l2

≤ 1.

Therefore, if a2 = ah, we have

l3 = l2 × inf
F

1− F 1 (X2)

1− F 0 (X2)
= l2 = X0 × l0.

If a3 = al, we have l3 =
1
γ × l2 ≤ X0 × l0. Extending the argument to all i ≥ 2, so we have

li ≤ X0 × l0 < 2 exp

∣∣∣∣∣∣log
√

uh − u

ul − u

∣∣∣∣∣∣× l0
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for sufficiently large R0. Symmetrically, we also have li ≥ 1
2 exp

∣∣∣log√uh−u
ul−u

∣∣∣ l0 for sufficiently large
R0.

Second, suppose that ρhl = 1. Then Xi = 1/
√

lili, which degenerates to the equilibrium strategy
in the paper. Following the same argument as in Case 1, we also have: li ≤ l0 and li ≥ l0.

Third, suppose that ρhl = γ. Then, we have to compare the magnitude between X0 and γ when
R0 is sufficiently large. If X0 > γ for large R0, individual 1 will choose al regardless of her signal,
so an information cascade occurs, and li = l0 and li ≥ l0 for all i ≥ 1. If X0 < γ for large R0, the
analysis is identical to Case 1.

Fourth, suppose that ρhl > γ. Individual 1 will choose al regardless of her private signal. An
information cascade occurs on al, so li = l0 and li ≥ l0 for all i ≥ 1.

As a consequence, when R0 is sufficiently large, we can ensure that li is sufficiently small and
li is sufficiently large for all i. Then, individuals will only choose actions from As in the end.
Furthermore, as shown in the proof, the society will settle on one action with probability 1.

A.4 Proof of Proposition S10

Proof. Denote r (hi, Gi) as the threshold value of individual i when her observation structure is Gi

and the history is hi, i.e., individual i will choose action 1 if λi ·r (hi, Gi) ≥ 1 and action 0 otherwise.
Define

R (k) = max
{
r (hk, Gk) : hk ∈ {0, 1}k−1 and Gk ⊂ {1, ..., k − 1}

}
,

which denotes the highest threshold value for individual k. Define R (k) to be the lowest threshold
value for k. Let

K ≡ sup

{
k ∈ N : γ > R (k + 1) ≥ R (k + 1) >

1

γ

}
.

It can be verified that K ≥ 1, so the definition is meaningful.10 Define K ≡ min
{
K,M

}
, where M

is a finite constant. For individual i > K, suppose that ai = 1, then

li+1 = li × min
G∈G0

1− F 1
(

1
r(hi,Gi)

)
1− F 0

(
1

r(hi,Gi)

) ≥ li.

Let Ĝ be an arbitrary network bounded by K. By definition, all actions after individual K are not
observable under Ĝ, so for all i > K, we have

r
(
hi, Ĝi

)
= r

(
hK+1, ĜK+1

)
.

10To see that, when k = 2, h2 ∈ {{0} , {1}}, G2 ∈ {∅, {1}}. Suppose that h2 = {1}, i.e., individual 1 took
action 1. If G2 = ∅, we have r (h2, ∅) = 1 ∈ (1/γ, γ); if G2 = {1}, then it becomes the standard model, where
r (h2, {1}) = 1−F1(1)

1−F0(1)
. Since supp (F ) = [1/γ, γ], we have r (h2, {1}) ∈ (1/γ, γ). The case where h2 = {0} is

symmetric, so r (h2, G2) ∈ (1/γ, γ) for all possible h2 and G2.
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By definition, r
(
hK+1, ĜK+1

)
≤ R (K + 1) < γ, so

li+1 ≥ li ·
1− F 1

(
1

r(hi,Ĝi)

)
1− F 0

(
1

r(hi,Ĝi)

) = li ·
1− F 1

(
1

r(hK+1,ĜK+1)

)
1− F 0

(
1

r(hK+1,ĜK+1)

)

> li ·
1− F 1

(
1

R(K+1)

)
1− F 0

(
1

R(K+1)

) ≡ li · β.

Since R (K + 1) < γ, we have β > 1, so

ri+1 =
√

li+1li+1 ≥
√
β · ri.

Similarly, when ai = 0, we must have ri+1 ≤
√
1/β · ri, so an information cascade occurs with

probability 1 from Lemma 3 in the paper.

A.5 Proof of Corollary S2

Proof. Let G denote the network structure in which only the first K individuals are observable. Let
E denote the event that an information cascade does not arise before K. In other words,

E = {s∞ ∈ S∞ : r (hK , GK) ∈ (1/γ, γ)} .

Denote by En ≡ {s∞ ∈ S∞ : r (hK , GK) ∈ [1/γ + 1/n, γ − 1/n]}, so E = ∪nEn. From the proof of
Proposition S10, we know that on En, for all i > K,

ri+1 ≥

√√√√√1− F 1
(

1
γ−1/n

)
1− F 0

(
1

γ−1/n

) · ri ≡ β × ri,

when ai = 1, and ri+1 ≤ 1
β · ri when ai = 0. Levy’s 0-1 implies that on En, an information

cascade occurs except for null events. Note that E is countable union of En, so whenever E occurs,
an information cascade must also occur except for null events. In addition, when Ec occurs, an
information cascade occurs by definition. As a consequence, an information cascade must occur
with probability 1.

23


	Conditions for Complete Learning
	Conditions for Information Cascades
	Multiple Actions
	Linear Utility Function
	General Utility Functions

	Multiple States
	Heterogeneous Ambiguity
	Individuals have heterogeneously ambiguous DGPs
	Individuals are heterogeneously ambiguous about others

	The -Maximum Likelihood Rule
	Ambiguity over the Network Structure
	Appendix: Omitted Proofs in the Supplementary Materials
	Proof of Theorem S1
	Proof of Proposition S3
	Proof of Proposition S4
	Proof of Proposition S10
	Proof of Corollary S2


