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Abstract

This paper studies a sequential social learning problem in which individuals face ambiguity
regarding other people’s signal structures. It finds that ambiguity has a significant influence
on social learning and offers new insights into the mechanism driving herding behavior. In
contrast to previous findings that identified various learning outcomes based on fine details of
the learning environments, such as the statistical properties of the signal structures, this paper
establishes information cascades as the only robust outcome under ambiguity. Specifically, it
demonstrates that in the presence of sufficient ambiguity, an information cascade will occur
almost surely, regardless of the statistical properties of the signal structures or other specific
details of the learning environments. Furthermore, this paper highlights that some standard
results that feature the absence of a cascade can become fragile in the face of ambiguity. In
some cases, even a slight degree of ambiguity can trigger a cascade when signals are bounded
and can lead to incorrect learning when signals are unbounded.
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1 Introduction

Herding behavior is an important feature of real life. One of the most influential models to explain
herding behavior is the sequential social learning model (SSLM) introduced by Banerjee (1992)
and Bikhchandani et al. (1992). Under this framework, a sequence of individuals take actions to
match the actual state. Individuals receive i.i.d. private signals with a commonly known data-
generating process (DGP), which generates a finite number of signals. The authors showed that an
information cascade will arise with probability 1 and an incorrect cascade occurs with a positive
probability. In the end, all individuals will choose to ignore their own signals and follow one action,
even if that action is suboptimal.

The theory of information cascades was later challenged by the following two findings by Smith
and Sørensen (2000). First, when signals are unbounded, the society will eventually settle on the
correct action, which implies that an incorrect herd cannot occur. Second, even if signals are
bounded, an information cascade may or may not occur depending on the statistical properties
of the actual DGPs. More precisely, when the DGPs satisfy the increasing hazard ratio property
(IHRP) or the log-concavity property, an information cascade will not take place (Herrera and
Hörner, 2012; Smith et al., 2021). Because many common distributions satisfy these properties,
the SSLM cannot generate information cascades or incorrect herding in many interesting situations.
Recent works on misspecified learning further suggest that if individuals consider an incorrect DGP,
the learning outcome would also depend on the model perception, and it is possible that actions will
oscillate forever (Bohren, 2016; Bohren and Hauser, 2021).1 In summary, the literature concludes
that social learning outcomes depend on the fine details of the true model and model perceptions.
This raises the question of which learning outcome remains robust when alternative specifications
of these details are considered. Furthermore, the literature predominantly focuses on cases where
individuals have expected utility preferences, leaving the question of how society learns with other
preferences largely unexplored.2

This paper studies social learning with ambiguity-averse individuals. Unlike most previous
works in which individuals are certain about the society’s signal structure, this paper adopts
the assumption that individuals are ambiguous about predecessors’ DGPs by considering a set
of DGPs as possibilities. It describes a situation in which individuals face model uncertainty
and cannot determine a specific DGP that explains the information of interest or form a prior
distribution over DGPs. The distinction between risk and ambiguity was made by Knight (1921),
and it plays an important role in understanding decision making under uncertainty.3 In the
specific context of social learning, ambiguity can emerge naturally because, in reality, individuals’
information quality can vary significantly; some individuals are “experts" with better information,
whereas others are “laymen" with little information who mainly follow others. Furthermore,

1Their setups do not nest the standard SSLM, but the insight still holds in the standard model.
2Bikhchandani et al. (2021) and Golub and Sadler (2017) provide excellent surveys on SSLM.
3See Hansen et al. (2014); Marinacci (2015); and Hansen and Marinacci (2016) for surveys on ambiguity and

model uncertainty.

2



individuals often have limited observations from others; for example, in SSLM, individuals only
observe one action from each predecessor, making it challenging to distinguish between “experts"
and “laymen" or determine the distribution of these two types, resulting in ambiguity. In the
benchmark model, I also assume that individuals have the max-min expected utility (MEU)
preferences as in Wald (1950) and Gilboa and Schmeidler (1989), so they are ambiguity-averse
and choose an action to maximize the expected utility in the worst-case scenario. The motivation
for MEU preferences is twofold. First, it relaxes the independence axiom of the expected utility
and is compatible with some experimental evidence, e.g., the Ellsberg paradox (Ellsberg, 1961).
Second, it describes the situations where individuals have the robustness concern in their decision
making (Hansen and Sargent, 2001). In the presence of model uncertainty, individuals are worried
about model misspecification and may seek to make robust decisions with respect to all models
they consider possible.

In the paper, I provide detailed discussion of social learning under ambiguity and characterize
learning outcomes. In contrast to previous findings that various learning outcomes can emerge
depending on the modeling details, this paper finds that under sufficient ambiguity, i.e., when
individuals consider adequately many models, information cascades will emerge as the only outcome
in the sequential social learning environment. Therefore, it establishes information cascades as
a robust result in an ambiguous environment whose occurrence relies little on various details
of the learning environment—e.g., (i) the fine properties of the true DGPs, and (ii) whether a
particular model is perceived by individuals. This finding may appear counter-intuitive since, from
the previous literature, different DGPs can lead to different learning outcomes. It seems unclear
what will happen if individuals consider multiple DGPs simultaneously, and a natural conjecture
is that the learning outcomes should also exhibit a variety of forms depending on the fine details of
the perceived model set. However, the paper notes that the DGPs that encourage an information
cascade and discourage it are actually asymmetric. When the environment features sufficient
ambiguity, the cascading force always dominates, establishing information cascades as the only
robust result.

To illustrate the asymmetry, consider an example where customers decide which restaurants
to go to and face ambiguity about other customers’ informativeness. Suppose that all customers
went to restaurant A, and the next customer received a signal supporting restaurant B. If the next
customer went to restaurant B, the worst-case scenario is that all predecessors are experts, their
signals are all very precise, and their actions reveal strong information supporting restaurant A. On
the other hand, if the customer went to restaurant A, the worst-case scenario is that all predecessors
are laymen, their signals are uninformative, and their actions do not reveal any information about
each restaurant. As ambiguity increases, the customer would be more concerned about breaking
away from the herd, because she could not rule out the possibility of acting against some highly
precise signals. In contrast, the concern about following the herd is more controllable, because the
customer would only act against her private signal, the precision of which is certain to her. This
asymmetry in the worst-case scenarios pushes the customer to follow and creates a cascade force.
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Below is a more concrete example.

Example 1. The state space Θ = {0, 1}. The true state is unknown. Individuals share a common
flat prior π0. Every individual i takes action ai ∈ {0, 1}. The utility is 1 if the action matches the
state and 0 otherwise. Each individual i receives a signal si ∈ {H,L} and has DGP gi (s|θ) with

gi (H|1)
gi (L|1)

=
gi (L|0)
gi (H|0)

= γi ∈ (1,∞) ≡ Γ,

where gi (s|θ) denotes the conditional probability of signal s in state θ, and γi describes individual
i’s signal precision. Individuals only know their own signal precision but are ambiguous about
others’ precision and they believe that every γi ∈ Γ is possible. Suppose that the first individual’s
(his) action is a1 = 1. Denote by V2 (a) the minimum expected utility of the second individual
(she) if she takes action a. We have

V2 (1) =

γ2/ (γ2 + 1) s2 = H

1/ (γ2 + 1) s2 = L
and V2 (0) = 0.

To see that, the worst-case scenario for a2 = 1 is that individual 1 only received uninformative
signals, so individual 2’s utility is γ2

γ2+1 if her signal is H and 1
γ2+1 if her signal is L. On the

other hand, the worst-case scenario for a2 = 0 is that individual 1 received the perfectly revealing
signal, so individual 2’s minimum utility is 0.4 Since V2 (1) > V2 (0), individual 2 will always follow
individual 1’s action regardless of her private signal, so an information cascade occurs immediately.

The paper extends the insight from this example to a general framework, in which (i) signals
can come from a wide class of distributions, and (ii) individuals can perceive an arbitrary model
set, which can encompass correct specification, misspecification, and various forms of ambiguity
as special cases. The paper characterizes social learning outcomes with this general information
structure and provides conditions under which an information cascade occurs. The paper starts with
the cases where signals are bounded. Theorem 2 provides sufficient conditions for an information
cascade to occur almost surely for bounded signals. The theorem states that whenever the perceived
model set contains an adequately informative DGP, i.e., a DGP that assigns sufficiently high
weights to precise signals, an information cascade will occur almost surely. In other words, as
long as individuals can’t exclude the possibility of some informative DGP, a cascade will always
emerge, regardless of what other DGPs individuals may also consider as possible, and regardless
of the statistical properties that the true DGPs may possess. The intuition is similar to that
in Example 1, where the perception of a highly informative DGP would encourage individuals
to follow a herd, creating an asymmetrically high cascade force, which cannot be offset by the
perception of any other DGPs. Perhaps surprisingly, Theorem 2 even implies that non-cascade
results represent knife-edge cases in some interesting situations. With the introduction of a slight
degree of ambiguity, an information cascade will occur almost surely even if there is no cascade in

4To be more precise, it is actually the infimum utility because γi cannot be 1 or infinity.
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the case without ambiguity. The paper then discusses the cases when signals are unbounded. With
sufficient ambiguity, an information cascade also occurs. To have a cascade with unbounded signals,
individuals are required to consider arbitrarily informative DGPs, which represents an extreme
situation. This paper then focuses on a weaker but qualitatively similar concept—herding, i.e.,
individuals end up taking the same action, which can be incorrect, but not necessarily ignoring their
private signals. Theorem 3 provides sufficient conditions for herding to emerge, and the conditions
are parallel to Theorem 2, which require individuals to consider an adequately informative DGP.
Similarly, Theorem 3 also implies that complete learning result in Smith and Sørensen (2000) is not
robust—in some situations, an incorrect herd can emerge when individuals consider DGPs that are
arbitrarily close to the true DGP. The main paper focuses on MEU preferences, but the insights
are then extended to general ambiguity preferences, as discussed later in the paper.

Technically, this paper differs from common papers in SSLM in two ways. First, under ambiguity,
individuals consider a set of DGPs, which leads to a set of posteriors, so we cannot keep track of the
posterior likelihood ratio as in the literature. Second, under ambiguity, the posterior under each
perceived DGP may no longer be a martingale, so we cannot apply the martingale convergence
theorem common in the literature. To solve the first challenge, this paper employs a simple
statistic—the average likelihood ratio, i.e., the geometric mean of the maximum and minimum
of posterior likelihood ratios generated by all perceived DGPs—and demonstrates that it serves
as a sufficient statistic for social learning under MEU preferences. To solve the second challenge,
this paper focuses on analyzing the dynamics of the average likelihood ratio. When signals are
bounded, it turns out that the dynamics are relatively simple. When signals are unbounded,
the analysis involves analyzing the local stability of the average likelihood ratio by estimating the
probability of each type of herding. It turns out that whether the average likelihood ratio can settle
on the correct/incorrect state is equivalent to whether a correct/herd can happen with a positive
probability, which is further equivalent to the convergence of an infinite series, whose increasing
rate relies on the tail properties of perceived DGPs, as will be explained later in the paper.

The paper proceeds as follows. Sections 2 and 3 lay out the model setup and characterize the
equilibrium. Sections 4 to 7 provide conditions for an information cascade to occur. Section 8

discusses other ambiguity preferences. Section 10 reviews related literature. Proofs are collected
in the Appendix. Other topics and extensions are presented in the Supplementary Material.

2 The Model

States and Actions. There are two possible states of world, Θ = {0, 1}. Without loss of
generality, the true state θ∗ = 0. A countably infinite set of individuals N = {1, 2, ...} act
sequentially. Each individual makes a choice a ∈ A = {0, 1} and can observe the choices taken
by all predecessors. Individuals get a payoff of 1 when their actions match the actual state and a
payoff of 0 otherwise.

Information structures. Individuals do not know the true state and share a common prior π0
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which is flat.5 Each individual i will receive a signal si ∈ S ⊂ R. Signals are independently, but
not necessarily identically, distributed according to

{
G

θ
1, G

θ
2, ....

}
, where G

θ
i : S → [0, 1] denotes

the cumulative distribution function of si when the actual state is θ. No signal perfectly reveals
the state, so the probability measures induced by G

0
i and G

1
i are mutually absolutely continuous.

Following the convention, I introduce the normalized signal, λi, where λi (s) =
dG

1
i (s)

dG
0
i (s)

denotes the

likelihood ratio induced by signal s. The distribution of the likelihood ratio λi is denoted by F
θ
i ,

which must satisfy λ = dF
1
i (λ)

dF
0
i (λ)

almost everywhere. The rest of the paper focuses on the normalized

signal, λ, and the normalized DGP, F θ
i . All normalized DGPs have a common support, Λ =

[
1
γ , γ
]
,

where γ > 1. Signals are bounded if γ < ∞ and signals are unbounded if γ = ∞. For notional
convenience, I assume: (i) all signals are continuous, that is, F θ

i is continuous for all i and θ, and
(ii) signals are symmetric F

1
i (λ) = 1 − F

0
i (1/λ) for all i and λ.6 Let F denote the set of feasible

DGPs with a typical element being F =
(
F 0, F 1

)
. Let Λ∞ denote the set of all signal paths with a

typical element being λ = (λ1, λ2, ...) and is associated with σ-algebra σ (Λ∞). Let P∗ denote the
probability measure on (Λ∞, σ (Λ∞)) induced by the true signal distribution

{
F

0
1, F

0
2, ....

}
. The

paper refers to P∗ as the true probability . Without explicit mention, every event is evaluated
according to the true probability.

Ambiguous Information and Beliefs. Individuals know their own DGPs and that all signals
are independently distributed, but they may be ambiguous about others’ DGPs by considering
a set of DGPs. Specifically, individuals share a common set of models, F0 ⊂ F, and believe
that every other individual’s DGP belongs to F0 but do not know which is the true DGP. The
ambiguity assumption describes a situation in which individuals lack sufficient knowledge to pin
down the society’s signal structure. It is believed to emerge naturally in social learning, in which
individuals only observe limited number of actions from other individuals, so the information is
often insufficient to determine a specific DGP. The paper’s setup allows for general F0, which can
nest following special cases.

Example 2. Correct Specification. Suppose that signals are i.i.d. with F i = F for all i, and
that F0 = {F}. Then, individuals correctly specify the society’s true signal distribution, which
corresponds to the standard social learning models, e.g., Banerjee (1992) and Bikhchandani et al.
(1992).

Example 3. Misspecification. Suppose that signals are i.i.d. with F i = F for all i, and that
F0 =

{
F̂
}

for some F̂ ̸= F . Then, individuals misspecify the society’s true signal distribution,
which corresponds to misspecified social learning, e.g., Bohren and Hauser (2021) and Arieli et al.
(2023).

5The paper’s analysis extends to any full-support prior or a set of priors bounded away from extreme beliefs.
6With continuity, we avoid separate notations that deal with discontinuity points; with symmetry, we only need

to characterize one size of the distribution. The paper’s discussion can extend to general cases because: (i) the
discontinuous case can be nested as a limit of the continuous case, and (ii) the asymmetric case can be dealt with
by imposing similar conditions on the other side of the distribution.

6



Example 4. Correct & incorrect ambiguity. Suppose that F0 is non-singleton, so individuals are
ambiguous about the true DGPs. Individuals are correctly ambiguous if

F0 ⊃
{
F 1, F 2, ....

}
,

that is, the model set contains every individual’s true DGP. Individuals are incorrectly ambiguous
if the model set doesn’t contain the true DGPs. The correct-ambiguity case is sometimes called
model uncertainty, and the incorrect-ambiguity case is called model misspecification, e.g., Hansen
and Marinacci (2016).

Example 5. Entropy-based ambiguity. Suppose that F0 takes the following form

F0 =

{
F ∈ F :

∫
log

(
Gθ(λ)

F θ(λ)

)
dGθ(λ) ≤ r

}
,

where G ∈ F and r > 0. It corresponds to the entropy-based ambiguity commonly seen in
the robust control literature, e.g., Hansen and Sargent (2001), where individuals consider all signal
distributions whose relative entropy w.r.t. the benchmark distribution G is less than r. Here, r
measures the degree of ambiguity. When r = 0, F0 = {G}, so there is no ambiguity as in Example
2 and 3. As r increases, F0 features a higher degree of ambiguity.

Example 6. Consistent ambiguity. Suppose that F0 is non-singleton and satisfies

∀i, θ, λ : F
θ
i (λ) =

∫
F θ(λ)dµ(F ) with F0 = supp(µ), (1)

for some probability measure µ ∈ ∆(F).7 That is, the true DGP can be obtained by mixing DGPs
in F0. Then, we say that the model perception features consistent ambiguity. To see understand
it, suppose that there is an ex ante stage in which every individual’s DGP is i.i.d. according to
a second-order distribution µ, and that individuals only consider DGPs that are ex ante possible,
so F0 = supp(µ). Besides, all events are evaluated according to the ex ante signal distribution,
so the true signal distribution is taken to be F

θ
i =

∫
F θ(λ)dµ(F ). In this case, individuals’ model

perceptions align with the true probability in the sense that they correctly specify all possible
DGPs at the ex ante stage. Consistent ambiguity is useful in applications, as it allows individuals
to maintain ambiguity and correctness simultaneously.8

Belief-updating Rule. Due to the informational ambiguity, individuals will form ambiguous
beliefs in social learning. Denote by hi = (a1, ..., ai−1) the history observed by individual i and by
Ii = {λi, hi} the information available to individual i—that is, her private signal λi and history hi.

7To save on notation, whenever supp(µ) appears, it is implicitly assumed that it is well-defined with respect to
some common topology. In most examples, I simply consider DGPs that can be parameterized by real numbers and
use the standard definition of the support on the real line.

8With some abuse of language, here the correctness means that perceptions are consistent with the true
probability, which is different from the correct ambiguity in Example 4.
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Let Ii be the set of all possible information available to i, and denote by σi : Ii → A the (pure)
strategy of individual i. Given strategy profile σ−i = (σ1, ..., σi−1), DGP profile F−i = (F1, ..., Fi−1)

and conditional on state θ, the observed history hi = (a1, ..., ai−1) is a stochastic process with a
probability measure PF−i (.|θ;σ−i). Given history hi and strategy profile σ−i, denote by Π(hi, σ−i)

the set of beliefs generated by DGPs in F0, which I refer to as a public belief set . That is,

Π(hi, σ−i) =
{
π ∈ ∆(Θ) : π (θ) = PF−i (θ|hi;σ−i) , F−i ∈ F i−1

0

}
,

where PF−i (θ|hi;σ−i) is the conditional probability on θ derived from PF−i (.|θ;σ−i), and F i−1
0 is

i−1 copies of F0. The public belief set consists of conditional probabilities generated by all possible
F−i ∈ F i−1

0 for which the conditional probabilities are well defined. Based on the public beliefs
and private signal λi, individual i will form a belief set, Πi (Ii, σ−i), which I refer to as a private
belief set . Assuming that individuals use the full Bayesian rule (axiomatized by Pires (2002)) to
update beliefs,

Πi (Ii, σ−i) =
{
π ∈ ∆(Θ) : π = BU

(
π′;λi

)
, π′ ∈ Π(hi, σ−i)

}
,

where BU (π′;λi) denotes the Bayesian update of belief π′ based on signal λi. In other words,
individuals update the public belief set prior-by-prior using Bayes’ rule. The full Bayesian rule is
commonly adopted in applications, but two major criticisms of it are (i) the set of models remains
unchanged after learning new information, and (ii) it can lead to dynamic inconsistency. These
criticisms are of less concern in this paper, because (i) individuals observe one action from every
other individual, so there is often very limited information to be learned about others’ DGPs, and
(ii) individuals make a once-in-a-lifetime decision, so dynamic inconsistency is not relevant here.
For these reasons, the paper’s main result also holds for alternative updating rules.9

Equilibrium Concept. Assume that individuals have max-min expected utility (MEU) preferences,
as in Gilboa and Schmeidler (1989). The equilibrium is defined as follows.

Definition 1. A strategy profile σ∗ = (σ∗
i )i∈N constitutes an equilibrium if for all i ∈ N and all

information sets Ii ∈ Ii, we have

σ∗
i (Ii) ∈ arg max

a∈{0,1}
inf

π∈Πi(Ii,σ∗
−i)

EπU (a, θ) , (2)

where U (a, θ) is the utility function that equals 1 if a = θ and 0 if a ̸= θ.

Where no confusion would exist, I omit the equilibrium strategy notation σ∗ and denote Π(hi)

and Πi (Ii) as the equilibrium public belief set and posterior set. Individuals follow some tie-
breaking rule when indifferent, so Definition 1 provides a unique pure-strategy equilibrium. The

9For example, the α-maximum likelihood rules as discussed in Section 6 of the Supplementary Material.
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choice of tie-breaking rule is not essential to the result, so I do not specify it in the paper.10

By focusing on pure strategies, the paper implicitly assumes that agents cannot be better off by
playing mixed strategies. Note that this assumption is not contradictory to ambiguity-aversion,
which says that individuals have incentives to engage in ex post randomization instead of ex ante
randomization, as in the mixed-strategy case.11

3 Equilibrium Strategies and Learning Concepts

This section first characterizes individuals’ equilibrium strategies under ambiguity and then defines
some learning concepts that will be used later.

3.1 Characterizations of Equilibrium Strategies

When individuals are ambiguous, it seems difficult to characterize learning dynamics because
individuals now form a set of posteriors instead of a single posterior. Fortunately, the max-min
model enables us to extend the concept of likelihood ratio and represent the posterior set using
the average likelihood ratio of beliefs featured in it. This property leads to a simple equilibrium
characterization, which enhances the tractability.

Definition 2. (Average Public Likelihood Ratio) Denote by L(hi) =
{

π(1)
π(0) : π ∈ Π(hi)

}
, the set

of public likelihood ratios. Let li = inf L(hi) and li = supL(hi), and denote by ri =
√
li · li, called

the average public likelihood ratio, based on history hi.

The average public likelihood ratio ri is the geometric average of the highest and lowest
likelihood ratios in the public belief set. It reflects how likely the public thinks state 1 is (relative
to state 0) on average. Proposition 1 characterizes individuals’ equilibrium strategies by employing
average public likelihood ratios.

Proposition 1. (Characterizations of Equilibrium Strategies) In the equilibrium, for any individual,
i ∈ N , and information set, Ii ∈ Ii, we have

σ∗
i (Ii) =

1 if λi · ri > 1

0 if λi · ri < 1
,

and the strategy at λi · ri = 1 is determined by the tie-breaking rule.
10When signals are continuous, the tie case happens with zero probability.
11Although it still remains a question of whether individuals can benefit from ex ante randomization, the literature

seems to suggest that indifference to ex ante randomization seems a reasonable assumption; e.g., in Seo (2009) and
Klibanoff et al. (2005), individuals have expected utility preferences over second-order acts; Saito (2012) suggests
that individuals have no incentive to engage in ex ante randomization under some axiom; Eichberger et al. (2016)
show that dynamic consistency implies that individuals are indifferent to ex ante randomization.
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Proof. Denote by πi (θ) = inf {π (θ) : π ∈ Πi (Ii)}, then ai = 1 if πi (1) > πi (0). Note that

πi (1) =
λili

1 + λili
πi (0) =

1

1 + λili
.

By solving πi (1) > πi (0), we have λi >
1√
li·li

= 1
ri

. The other case follows symmetrically.

The average likelihood ratio is an extension of the likelihood ratio in the standard model. It acts
as a sufficient statistic for the public history in cases in which there are multiple beliefs. Proposition
1 shows that individuals’ equilibrium strategies can be decomposed into two parts. The private
information component is the private signal, λi, whereas public information is captured by the
average public likelihood ratio, ri. When the product, λi · ri, is greater than 1, reflecting that state
1 is more likely, individuals will choose action 1 and vice versa. For simplicity, “average public
likelihood ratio” is sometimes referred to as “public belief” when there is no confusion.

3.2 Information Cascades and Some Learning Concepts

Definition 3. On a signal path λ = (λ1, λ2, ...), an information cascade occurs if there exists
some I < ∞ and a ∈ A such that for all i ≥ I, we have P∗ (ai = a|hi) = 1.

An information cascade occurs if, after some point, individuals will only choose one action
regardless of their private signals. During a cascade, information stops aggregating and the
society may settle on an incorrect action, albeit with infinitely many signals. Using Proposition 1,
information cascades can be described using the average likelihood ratio.

Lemma 1. Denoting by C0 =
[
0, 1γ

]
and C1 = [γ,∞], an information cascade of action a occurs

when there exists some I < ∞ such that ri ∈ Ca for all i ≥ I.

In the literature, Ca is referred to as the cascade set of action a. Whenever ri ∈ Ca, the public
belief that favors action a becomes so strong such that individuals will choose action a regardless
of their private signals; that is, an information cascade takes place. In classical models of finite
signals, an information cascade will almost surely occur, e.g., Banerjee (1992) and Bikhchandani
et al. (1992). However, with more general signal structures, the occurrence of a cascade is not
always guaranteed. The following outcomes are also possible.

Definition 4. On a signal path λ = (λ1, λ2, ...), we say that (i) herding occurs if there exists
some I < ∞ and a ∈ A such that ai = a for all i ≥ I; (ii) action non-convergence occurs if
ai fails to converge. We say that complete learning occurs if the correct-action herding occurs
P∗-almost surely;

The concept of herding is often confused with information cascade, since both imply the
conformity of actions. The difference is that individuals during a herd would have acted differently
if they received different signals, but individuals during an information cascade will choose the
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same action and ignore their private signals, so cascades are more stable than herding.12 When
signals are continuous and satisfy IHRP, the society achieves herding but not information cascades.
In addition to the absence of a cascade, Smith and Sørensen (2000) show that complete learning
occurs when signals are unbounded, so the SSLM does not explain the persistence of incorrect
herds in this case. Furthermore, if individuals misspecify the actual DGPs, action non-convergence
may emerge, in which case the SLLM does not necessarily lead to a consensus of actions.

4 Benchmark Case: Cascades under Extreme Ambiguity

This section considers an extreme case of ambiguity and shows that an information cascade occurs
in this case. Denote by F the set of all DGPs on [1/γ, γ], where γ denotes the highest signal. We
have the following theorem.

Theorem 1. When F0 = F , an information cascade occurs P∗-almost surely.

The condition F0 = F describes a situation in which individuals only understand the support
of signals and consider all DGPs on this support to be possible. Theorem 1 shows that in this
benchmark case, an information cascade occurs almost surely. This finding is different from the
standard findings in the following respects. First, in the standard literature, the occurrence of
a cascade relies on specific properties of true DGPs. However, Theorem 1 does not impose any
restrictions, so a cascade can occur under all DGPs on [1/γ, γ]. Second, in the misspecified learning
literature, the learning outcome depends on the model specification; however, Theorem 1 shows
that when individuals consider multiple model specifications simultaneously, information cascades
will emerge as the only outcome. Therefore, Theorem 1 shows that under high ambiguity, a cascade
almost surely arises without regard to many details that would matter in the standard case.

The intuition

When signals are unbounded γ = ∞, an information cascade occurs immediately after the first
individual, as in Example 1. Below, I focus on the bounded-signal case γ < ∞. Suppose that the
first i individuals took action 1 and that individual i + 1 received a signal 1

γ , the strongest signal
for state 0. Suppose that an information cascade did not occur when the first i individuals made
decisions. Let’s consider the decision problem of individual i+ 1. As she has MEU preference, her
decision is determined by the worst scenarios:

• If she follows the herd and takes action 1, the worst case is that the predecessors’ DGPs are
uninformative. In this case, λ1 = ... = λi = 1. By following the herd, she would act against
her private signal, 1

γ .

12The concept of information cascade was proposed by Bikhchandani et al. (1992) and tested in a lab experiment
by Anderson and Holt (1997). The difference between information cascade and herding was distinguished by Smith
and Sørensen (2000) and tested by Çelen and Kariv (2004) in an experimental environment.
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Figure 1: Information Cascades under Ambiguity
Note: The horizontal axis represents the prior likelihood ratio (between states 1 and 0), and the vertical axis
represents the posterior likelihood ratio after observing an action 1 (the dynamics after an action 0 are symmetric).
The yellow area represents the non-cascade region. Figure 1a depicts the likelihood curves under F1 and F2. Figure
1b depicts the set of likelihood curves under all DGPs in F (marked by the gray shaded area). Figure 1c depicts
the average likelihood curve under F .

• If she breaks the herd and takes action 0, the worst case is that every predecessor’s DGP has
the most precise DGP—i.e., the DGP that only generates signals γ and 1/γ. In this case,
the predecessors’ actions reveal that their signals must be γ.13 Hence, by taking action 0,
individual i+ 1 would act against i signal γ.

As can be seen, the forces that encourage a cascade and discourage it are asymmetric. As i

increases, individual i + 1 would act against increasingly more signals γ in the worst case if she
broke the herd; however, she would only act against one signal—her private signal—in the worst
case if she followed the herd. When i is sufficiently large, individual i+ 1 would find it optimal to
follow, which creates an information cascade.

Graphic illustration. Figure 1a illustrates that the occurrence of a cascade depends on the
DGP if there is no ambiguity. In the figure, F1 satisfies the IHRP, but F2 does not. As can be
seen, posteriors under F1 are trapped in the non-cascade set, so a cascade never occurs; however,
posteriors under F2 can extend into the cascade set, so a cascade can emerge.

Figure 1b illustrates that under ambiguity, the forces that encourage a cascade and discourage
it are asymmetric. When beliefs are in the non-cascade set, the upper envelope of all likelihood
curves under F (marked by F) has a slope of γ, which means that observing an action 1 can at most
increase the likelihood of state 1 (relative to state 0) by a factor of γ. However, the lower envelope
(marked by F) is always bounded from below by the 45-degree line, which means that observing an
action 1 cannot decrease the likelihood of state 1.14 The asymmetry of these two curves corresponds

13If any of them received a signal 1/γ, that individual would have taken action 0 given the presumption that a
cascade did not occur.

14The upper envelope is obtained at the DGP that only generates the most precise signals, γ and 1/γ. The lower
envelope has a kink at 1. When li > 1, the lower envelope is obtained at the uninformative DGP. When li < 1,
individual i’s prior favors state 0, so she must have received some minimum information to take action 1. In this
case, the lower envelope is obtained at the DGP that only generates signals 1/li and li.
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to the asymmetry between cascade and non-cascade. The worst-case scenario for breaking a herd
happens when beliefs are updated according to the upper envelope, in which case predecessors have
the most precise DGP and individuals would act against a sequence of signal γ. In contrast, the
worst-case scenario for following a herd happens when beliefs are updated according to the lower
envelope, in which case the minimum expected utility is bounded from below by the expected
utility when predecessors have uninformative DGPs. Figure 1c depicts the average likelihood curve
(marked by Favg), which is obtained by averaging the two envelope curves. As can be seen, the
average likelihood curve extends to the cascade set, so an information cascade can occur. To fully
prove Theorem 1, it remains to show that the probability of a cascade is 1, which is delegated to
the Appendix.

5 Information Cascades with Bounded Signals

The previous section focuses on the extreme case in which individuals consider all DGPs on the
actual support to be possible. This section provides less restrictive conditions on the model setup
under which an information cascade occurs. Throughout this section, I focus on the case with
bounded signals, i.e., γ < ∞. We have the following result.

Theorem 2. (Cascade with bounded signals). Suppose that there exists some F ∈ F0 such that
one of the following conditions holds:

(1) F is discrete at γ;

(2) F is continuously differentiable on (γ − ε, γ) for some ε > 0 with f1 (γ) > 2
γ−1 ,

where f1 (γ) = limx↗γ
dF 1

dx (x). Then, when signals are bounded, an information cascade occurs
P∗-almost surely.

The two conditions say that individuals consider a DGP that assigns adequately large weights
to high-precision signals, i.e., the tail is adequately heavy. With some abuse of language, I refer
to DGPs that satisfy similar heavy-tail conditions as highly informative. Theorem 2 therefore says
that if individuals find it possible that other individuals may have a highly informative DGP, an
information cascade will occur almost surely.

The conditions in Theorem 2 are not very restrictive: First, it only requires that F0 contain
one such F but does not impose other restrictions on F0; second, it only imposes restrictions on
the F ’s tail but does not impose any restrictions in the middle. The intuition behind the first
point is similar to that in the benchmark case: If a highly informative DGP is considered possible,
it will create a strong cascade force—which, due to the asymmetry, cannot be mitigated by any
other model perception, therefore an information cascade always occurs regardless of the detailed
structure of the model set.

The intuition behind the second point can be illustrated using Figure 2, which depicts the
likelihood curves when ri ∈ (γ − ε, γ) ≡ C1

ε . By definition, the upper envelope of likelihood curves
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Figure 2: Sufficient Conditions for Information Cascades
Note: Figure 2 depicts the posterior likelihood curves in a small neighborhood near γ. The gray shaded area
represents all likelihood curves generated by models in F0, and the yellow area represents the non-cascade set.

under F0 (marked by F0) must lie above the likelihood curve under F (marked by F ) for all F ∈ F0.
From the previous discussion, the lower envelope curve (marked by F0) is always bounded from
below by the 45-degree line.15 As a consequence, when the likelihood curve under F is adequately
high, which can be guaranteed by the “highly informative” conditions in Theorem 2, the averaged
likelihood curve (marked by Favg

0 ) will enter the cascade set. This implies that a cascade will be
triggered by an action 1 whenever beliefs enters C1

ε . It can be verified that whenever a cascade
doesn’t occur, there is a positive probability for beliefs to enter C1

ε and trigger a cascade, which
implies that an information cascade occurs with probability 1. Therefore, it suffices to focus on
the region C1

ε and restrict the tail property of F in order to produce a cascade, which explains the
second point.

Remark 1. Although Theorem 2 requires the perception of a specific F , we can’t simply interpret
F as the "effective model" perceived by the MEU individuals. In fact, learning under F0 is often
not observationally equivalent to learning under any F ∈ F0.16

Another common misinterpretation is that to have a cascade, individuals must be misspecified
in the sense that they consider specific incorrect DGPs. However, as will be discussed in Section
7, an information cascade can also occur when individuals are only ambiguity-averse but do not
entertain any incorrect models. Hence, information cascades are primarily driven by ambiguity
attitude and are robust in the face of model misspecification, rather than being caused by it.

Theorem 2 also implies that standard results featuring the absence of an information cascade
may even represent knife-edge cases. Below is an example.

Example 7. (ε-perturbation set) Suppose that the model set is as follows

F0 = (1− ε)G+ εF ≡
{
F : F = (1− ε)G+ εF ′,where F ′ ∈ F

}
,

15All these curves intersect at γ because when the public likelihood ratio becomes γ, the society will take action
1 for sure, so an additional action 1 brings no information, and hence γ becomes fixed point.

16Recall that the role of F is to provide a lower bound for the upper envelope, but the exact learning dynamics
depend on both upper and lower envelopes, which often depends on the detailed structure of F0.
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where F represents the set of all DGPs on [1/γ, γ], and G ∈ F and ε ∈ (0, 1). When ε = 0, we
have F0 = {G}, which corresponds to Bayesian social learning, so we can have a variety of learning
outcomes—e.g., cascade, herding and action oscillations—depending on the properties of G the
true DGP. In sharp contrast, whenever ε > 0, an information cascade occurs almost surely for all
possible G and true DGPs. It shows that any non-cascade result is not robust with respect to
arbitrarily small perturbations.

Necessary Condition for Cascades

Notice that the conditions in Theorem 2 are sufficient but not necessary. A simple necessary
condition for cascades is that F0 must contain a DGP whose likelihood curve enters the cascade
set, that is, F0 must contain a DGP that violates the IHRP; e.g., F2 in Figure 1a. This is because
if all DGPs satisfy the IHRP, then the learning dynamics under each possible DGP are trapped in
the non-cascade set, so the average likelihood curve is also trapped in the set, which implies that
a cascade will not occur.

This condition, however, is not sufficient. In Figure 3a, the likelihood curve under F̂ enters the
cascade set; however, when individuals consider F0 =

{
F̂ , F∅

}
, where F∅ denotes the uninformative

DGP, an information cascade will not occur, as shown in Figure 3b. Intuitively, F̂ is inadequately
informative in Theorem 2’s sense, so when it is perceived with a highly uninformative DGP, the
non-cascade force dominates and a cascade will not occur.

Remark 2. It is not known if there exists a simple necessary and sufficient condition for information
cascades even in the standard case. The closest condition in the literature is perhaps the IHRP or
log-concavity condition which is necessary and sufficient for the posterior monotonicity property,
i.e., the posterior likelihood ratio is increasing in the prior likelihood ratio.17 In Section 2 of
the Supplementary Material, I provide a similar necessary and sufficient condition for the average
posterior monotonicity property : The average posterior likelihood ratio is monotonic in the prior
likelihood ratio iff the average hazard ratio of every DGP in F0 is strictly increasing. This condition
ensures that a cascade will not occur under ambiguity. In other words, to have a cascade, the average
posterior likelihood ratio must be non-monotonic.

6 Incorrect Herding with Unbounded Signals

This section extends Theorem 1 to unbounded signals. Note that information cascade is a restrictive
concept for unbounded signals, so it is difficult to occur under small ambiguity as in the last
section.18 This section finds that we can still establish results parallel to the bounded-signal case

17The posterior monotonicity is a highly relevant concept because it implies that a cascade will not occur.
18When signals are unbounded, a cascade requires individuals to ignore arbitrarily strong signals, so the model

set must also be “unbounded” in the sense that it contains arbitrarily informative DGP. It is also worth noting that
although a cascade can’t occur with "bounded" model set, it can occur with preferences less extreme than MEU as
shown in Section 8.1.
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Figure 3: Necessary Conditions for Cascades

by focusing on a weaker but qualitatively similar concept—herding. I show that under moderate
conditions, herding occurs almost surely, and an incorrect herd occurs with a strictly positive
probability. In some interesting situations, the complete learning result featured by Smith and
Sørensen (2000) no longer holds as long as there is a grain of ambiguity.

6.1 Sufficient Conditions for Herding

The following theorem provides a sufficient condition for herding.

Theorem 3. (Herding with unbounded signals). Suppose that for all i, F 0
i (x) ≤ axα with a, α > 0

as x → 0. If there exists some F ∈ F0 such that xp = o
(
F 0 (x)

)
as x → 0 for some p ∈ (0, α),

herding occurs P∗-almost surely, and incorrect herding occurs with a P∗-strictly positive probability.

Theorem 3 is a parallel statement of Theorem 2 when signals are unbounded. The restriction
F

0
i (x) ≤ axα says that the true DGP is bounded by some power function. This condition is

relatively weak and can cover many interesting DGPs.19 The condition xp = o
(
F 0 (x)

)
means that

the tail of F 0 (x) is sufficiently fat, so it is parallel to the conditions in Theorem 2. Thus, Theorem
3 says that when individuals consider a highly informative DGP, herding occurs almost surely
and the herding can be incorrect. The intuition is similar to that behind Theorem 2—whenever
individuals perceive a highly informative DGP, it creates a strong herding force that cannot be
offset by any other model, so an incorrect herding can emerge. Also, Theorem 3 only requires F0

to contain a specific model without imposing restrictions on other structures, so it is easy to hold
in many interesting cases as implied by the following corollary.

Corollary 1. Suppose that signals are i.i.d. with F
0
(x) = O (xα) with α > 0 as x → 0. If there

exists some F 0 ∈ F0 such that F 0 = O (xα−ε) with ε ∈ (0, α) as x → 0, then herding occurs
P∗-almost surely, and incorrect herding occurs with a P∗-strictly positive probability.

19For example, normal distributions, power law distributions and many others. One class of DGPs that violates
the condition is F

0
i (x) ∼ 1/| log (x) | as x → 0 (Rosenberg and Vieille, 2019).
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Corollary 1 says that if the true DGP has a “power tail,” arbitrarily small ambiguity in the
power of F 0 is sufficient to trigger an incorrect herding.20 This suggests that within this class of
models, complete learning is not robust in a sense. Below is a concrete example.

Example 8. For better exposition, this example focuses on the actual signal si (instead of
normalized signals). Consider the signal space S = (0, 1); signals are i.i.d., and the DGP takes the
form of gm =

(
g0m, g1m

)
, where

g0m (s) = (m+ 1) (1− s)m and g1m (s) = (m+ 1) sm for s ∈ (0, 1) .

The true DGP is gθm0
where m0 > 0. It is easy to see that signals are unbounded—i.e., g0m0

(s) /g1m0
(s)

is unbounded, so complete learning will occur if individuals precisely perceive the true DGP.
Suppose that individuals are ambiguous and perceive a set Mε = [m0 − ε,m0 + ε] ⊂ R+. Corollary
1 implies that for all ε > 0, complete learning no longer holds, and the society will settle on an
incorrect action with a strictly positive probability.

Sketch of the Proof

For simplicity, I sketch the proof for Corollary 1, and the proof for Theorem 3 is similar. The main
technical difficulty is that under ambiguity, posteriors are no longer martingales, so we cannot
apply the martingale techniques as in Smith and Sørensen (2000). This paper’s approach is to
evaluate the probability of both types of herding and check whether the probability of each herding
is positive. First note that the probability of an incorrect herd starting from the first individual is

lim
i→∞

P∗ (a1 = ... = ai = 1) =

∞∏
i=1

(
1− F

0
(1/ri)

)
,

where ri denotes the average public likelihood after hi = (1, ..., 1). The R.H.S. is positive if and only
if
∑

i F
0
(1/ri) < ∞, which is further equivalent to

∑
i

(
1
ri

)α
< ∞, where the equivalence comes

from the facts that: (i) ri → +∞ during an action-1 herd,21 and (ii) F
0
(x) can be approximated

by xα when x is close to 0. Next, we can show that the growing speed of ri is bounded from below
by a power function. Formally, if there exists some F ∈ F0 such that F 0(x) = O(xβ) as x → 0.
Then we must have

ri ≥ (i+ C)1/β for some C > 0, (3)

when i is large. Note that if F0 contains a DGP with a smaller power (hence more informative),
the R.H.S. of (3) is larger, so ri can grow faster. Corollary 1 assumes that there is some DGP in

20Formally, if F 0(x) ∼ xα as x → 0, I say that F has a power tail, and the power of F is α.
21The intuition is similar to the standard case: During an action-1 herd, and when signals are unbounded, the

society believes state 1 is increasing more likely, and the average likelihood ratio goes to infinity.
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F0 with power β = α− ε, so (3) implies that

∑
i

(
1

ri

)α

≤
∑
i

1

(i+ C)α/β
=
∑
i

1

(i+ C)
α

α−ε

< ∞, (4)

which establishes that an incorrect herd occurs with a strictly positive probability.22 Similarly, we
can show that a correct herd also happens with a strictly positive probability. The intuition is that
signals supporting the true state are more likely to realize, so the society is more likely to form a
correct herd than an incorrect herd. Once we show that both herds happen with a strictly positive
probability, we can employ standard 0-1 arguments to show that herding occurs almost surely.

Remark 3. Why complete learning is not robust. From (3) and (4), we can get an idea of why
complete learning is not robust for power-tail DGPs. It turns out that with power tails, whether
complete learning occurs is related to the convergence of some p-series with p = α/β, where α is
the power of the true DGP, and β is the minimum power of perceived DGPs.23 The fragility of
complete learning comes from the property that the p-series changes from divergence to convergence
at p = 1. The case in Smith and Sørensen (2000) corresponds to p = 1, i.e., β ≡ α, so the infinite
series on the R.H.S. of (4) becomes

∑
i

1

(i+ C)α/β
=
∑
i

1

i+ C
= ∞, (5)

which is consistent with the divergence of
∑

i

(
1
ri

)α
, which implies the absence of an incorrect herd.

However, when individuals face ambiguity and perceive some DGP with power β < α regardless
of how close it is to α, we have p = β/α > 1, and the infinite series becomes convergent, so an
incorrect herd can emerge.

Conditions for complete learning

Previous discussion shows the fragility of complete learning under ambiguity. It is natural to ask
when complete learning occurs. Section 1 of the Supplementary Material provides a necessary
and sufficient condition for complete learning when DGPs have power tails. Specifically, I show
that when the true DGP and all perceived DGPs have power tails and satisfy some regularity
conditions, complete learning occurs iff : (i) all DGPs’ power is weakly greater than the true power
(i.e., the power of the true DGP), and (ii) some DGP has a power strictly less than the true power
plus 1. That is, when we have

minP(F0) ∈ [P,P + 1),

22To be more precise, the summation is taken for large i, i.e.,
∑

i≥I for some finite I. But this doesn’t change the
convergence, so it is omitted for brevity.

23A p-series is S(p) =
∑∞

n
1
np . The series is convergent if p > 1 and divergent when p ≤ 1.
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where P is the power of the true DGP, and minP(F0) denotes the minimum power of perceived
DGPs.24 The intuition is as follows. To achieve complete learning, we need to exclude two sources
of incomplete learning—incorrect herding and action non-convergence. First, to exclude incorrect
herding, F0 cannot contain any highly informative DGP, i.e., the power of all DGPs must be greater
than some lower bound. This comes from the fact that the cascading force from a highly informative
DGP can’t be offset by any other DGP due to the aforementioned asymmetric effect. Second, to
exclude action non-convergence, F0 must contain some DGP that is adequately informative, i.e.,
F0 must contain some DGP whose power is less than some upper bound. This is because if all
DGPs under consideration are of little precision, individuals tend to think others’ actions are not
very informative, so they will constantly break a herd, which prevents actions from converging. We
can further show that the upper bound and lower bound correspond to P and P + 1 respectively.

7 Cascades and Herding under Consistent Ambiguity

Previous sections allow individuals to perceive an arbitrary F0, so the perception of incorrect models
and MEU preferences can appear together, making it not obvious how ambiguity itself can drive a
cascade. To observe the direct effect of ambiguity attitude, this section discusses a special type of
ambiguity in which model perceptions must be consistent with the true probability, so individuals
are both ambiguous and correctly specified. This section adopts the following assumption.

Assumption 1. (Consistent Ambiguity) Suppose that F i and F0 jointly satisfy

∀i, θ, λ : F
θ
i (λ) =

∫
F θ(λ)dµ(F ) with F0 = supp(µ),

where µ ∈ ∆(F) is a second-order distribution over DGPs.

As discussed in Example 6, Assumption 1 can describe the situation where everyone’s DGP is
distributed according to some second-order distribution µ, and individuals correctly perceive all
possible DGPs. Besides, all probabilities are calculated according to the ex ante probability, i.e.,
the true DGP F i is the ex ante signal distribution. In this case, ambiguity manifests itself in an
objective manner—where the set of perceived DGPs is equal to the set of ex ante possible DGPs.
Therefore, we can separate ambiguity attitudes from the effect of incorrect model perceptions.

7.1 Conditions for Information Cascades

Although the consistent ambiguity imposes extra restrictions on F i and F0, the next proposition
shows that all results about information cascades remain intact.

24A similar condition also appears in Arieli et al. (2023). They study sequential social learning with misspecified
model perception, which corresponds to the special case where F0 is a singleton set.
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Proposition 2. (Cascade with consistent ambiguity). Suppose that F i and F0 jointly satisfy
Assumption 1, and that either (i) F0 = F , or (ii) F i is bounded and F0 satisfies conditions in
Theorem 2, then an information cascade occurs P∗-almost surely.

Proposition 2 corresponds to special cases of Theorems 1 and 2: It is easy to verify that the
conditions of both theorems are satisfied, so the proof is omitted. The difference is that under the
conditions of Proposition 2, model perceptions are consistent with the true probability, so it shows
that MEU preference itself, instead of incorrect model perceptions, can produce an information
cascade under high ambiguity. Below is a concrete example.

Example 1’. Consider the same signal structures as in Example 1. Further suppose that every
individual’s signal precision γi

I.I.D.∼ µ. Individuals know µ but not the realizations of other
individuals’ signal precision. Let gµ(s|θ) =

∫
gγ(s|θ)dµ(γ) denote the ex ante signal distribution,

where gγ denotes the DGP with precision γ. All events are evaluated using gµ.

• Expected utility : When individuals have expected-utility preferences, it corresponds to the
standard SSLM with correct model specification, gµ. In this scenario, different learning
outcomes can occur, depending on the properties of µ. For example, when the support of µ
is unbounded, complete learning occurs (Smith and Sørensen (2000)). When µ has a discrete
and finite support, an information cascade occurs almost surely (Bikhchandani et al. (1992)).

• MEU : When individuals have MEU preferences, an information cascade occurs almost surely
for all possible µ, regardless of whether it has bounded or unbounded support or whether the
implied gµ satisfies the increasing hazard ratio property or not.

In both cases, individuals are correctly specified and do not consider any incorrect models. The key
distinction lies in their preferences, highlighting the role of ambiguity attitude itself in triggering a
cascade.

Remark 4. Combining all previous results, we can gain a comprehensive understanding of how
an information cascade occurs under ambiguity. Proposition 2 demonstrates that individuals with
MEU preferences, who consider only correct models, are prone to information cascades.

Theorems 1 and 2 further solidify the occurrence of cascades under general ambiguity. They
not only establish that a cascade occurs under correct model perceptions but also confirm that
it takes place under arbitrary model perceptions that exhibit sufficient ambiguity, which further
demonstrates the robustness of the cascade result.

7.2 Incorrect Herding with Unbounded Signals

Under consistent ambiguity, a cascade also requires extreme ambiguity for unbounded signals. I
then show that herding can emerge under moderate ambiguity parallel to Section 6. For tractability,
this subsection focuses on the case where DGPs belong to a parametric family with power tails.
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Assumption 2. (Power Tails) F0 = {F (·, α)}α∈A, where: (i) A = [α.α] ⊂ R++, and (ii) we have
F 0 (x, α) = O(xα) as x → 0 for all α ∈ A.

I also assume that µ admits a density function on A, and I use µ(α) to denote the density
function with some abuse of notation.25 We have the following proposition.

Proposition 3. (Herding with consistent ambiguity). Suppose that Assumptions 1 and 2 hold,
and that µ (α) ≤ C × (α− α)k as α → α for some C, k > 0, then herding occurs P∗-almost surely,
and an incorrect herd occurs with a P∗-strictly positive probability.

Proposition 3 is parallel to Theorem 3 and employs a similar proof technique. It says that if the
second-order distribution µ is controlled by some power function as α → α , then an incorrect herd
happens with a strictly positive probability. The intuition is as follows. First notice that under
MEU preferences, individuals are mostly influenced by the most informative DGP (i.e., the one
with power α), because it creates a strong cascading force that can’t be fully mitigated by other
models. When µ is controlled by some power function, highly informative DGPs are sufficiently
rare such that individuals essentially overweight the highly informative DGPs in their decisions to
a sufficient large extent such that a wrong herd persists with a positive probability. Below is a
concrete example.

Example 8’. Consider the same setup as in Example 8, where each individual’s DGP is parameterized
by mi. Suppose that mi is i.i.d. drawn from Mε = [m0 − ε,m0 + ε] according to a generalized beta
distribution µ, where

µ (m) = (m0 + ε−m)a × (m−m0 + ε)b × c

where a, b > 0, and c > 0 is a normalizing constant. All individuals correctly specify µ. When
individuals have expected-utility preferences, complete learning occurs. However, when individuals
have MEU preferences, and for any ε > 0, complete learning collapses, and an incorrect herd occurs
with a strictly positive probability.

Different from Example 8, here individuals only consider ex ante correct DGPs, yet incorrect
herding still emerges, even if ambiguity is arbitrarily small. This further establishes the fragility of
complete learning, which can occur even with consistent ambiguity.26

8 Other Ambiguity Preferences

The key results of this paper can be extended to a wider class of ambiguity preferences. Below are
two important examples: the smooth ambiguity preference and the α-max-min EU preference.

25The density function µ(α) ≡ dµ(F (·,α))
dα

.
26It is worth acknowledging that the fragility of complete learning is less pronounced with consistent ambiguity

compared to arbitrary ambiguity. To achieve fragility, we must require that the most informative DGP carries zero
density, i.e., µ(α) → 0 as α → α. Suppose the most informative DGP is realized with a strictly positive probability;
then complete learning can still occur.
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8.1 Smooth Ambiguity Model

The max-min model makes a restrictive assumption whereby decisions only depend on the worst
cases. To relax this assumption, I consider an extension in which individuals have the smooth
ambiguity preferences, as axiomatized by Klibanoff et al. (2005). Suppose that the model set is
F0 = {F (·, α)}α∈A, where A = [α, α] ⊂ R, and that preferences satisfy

Vi (a) = ϕ−1

(∫
Ai−1

ϕ
[
Eα1,...,αi−1 (U (a, θ) |Ii)

]
dµ (α1, ..., αi−1)

)
, (6)

where (i) Eα1,...,αi−1 (·) denotes the expectation when the first i−1 individuals’ DGPs have parameters
α1, ..., αi−1, and (ii) µ (α1, ..., αi−1) stands for the second-order belief on DGPs, and suppose that
µ features i.i.d. distribution and has full support on Ai−1, (iii) ϕ denotes the second-order utility
function and is strictly increasing, concave, and twice continuously differentiable. To quickly grasp
the idea, I first present an illustrative example and then state the formal results later.

Example 1”. (Cascades under smooth ambiguity preferences). Consider the same signal structures
as in Example 1. Signals are i.i.d. according to g(s|θ), which is the society’s true DGP. Suppose
that individuals have constant relative ambiguity aversion (CRAA) preferences

Vi (a) =

[∫ [
Eγ1,...,γi−1U (a, θ)

]1−ρ
dµ (γ1) ...dµ (γi−1)

] 1
1−ρ

,

where ρ is the coefficient of relative ambiguity aversion, and µ satisfies some regularity conditions
that will be specified later. Denote by gµ(s|θ) =

∫
gγ(s|θ)dµ(γ), which is referred to as the society’s

perceived DGP. We have the following results.

• Expected utility. When ρ = 0, individuals have expected-utility preferences. If gµ = g, it
corresponds to correct social learning; if gµ = g, it corresponds to misspecified social learning.
As discussed earlier, we have different learning outcomes, such as cascades, complete learning,
or action oscillations, depending on the properties of gµ and g.

• Ambiguity aversion. As ρ → +∞, we can show that the probability that an information
cascade occurs approaches 1 regardless of what the learning outcome is in the expected-utility
case. That is, information cascade gradually emerges as the only outcome as individuals
become increasingly ambiguity averse.

Information Cascades with Smooth Ambiguity Preferences

I then present the general conditions for information cascades under smooth ambiguity preferences.
Let ρϕ(u) = −ϕ′′(u)

ϕ′(u) denote the coefficient of ambiguity aversion and let ρ
ϕ

be the minimum of ρϕ(u)
over [0, 1]. We have the following proposition.
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Proposition 4. Suppose that signals are bounded, and that F0 satisfies the conditions of Theorem
2. Then for all ε > 0, there exists ρ0 < ∞ such that an information cascade occurs with a P∗-
probability greater than 1− ε for all ϕ with ρ

ϕ
> ρ0.

Proposition 4 shows an information cascade can occur with an arbitrarily large probability
when individuals are sufficiently ambiguity-averse. Therefore, the result under max-min model
can serve as a benchmark for high ambiguity aversion. The intuition comes from two facts: (i)
the smooth model approaches the max-min model as ρϕ → ∞, and (ii) an information cascade
occurs in finite time. We can ensure the belief dynamics under the smooth model and the max-min
model arbitrarily close up to any finite time by making ϕϕ sufficiently large. As a consequence, the
probability of a cascade can also be arbitrarily close to 1. Proposition 4 requires bounded signals.
I then show that when signals are unbounded, an information cascade can still occur under smooth
ambiguity preferences.

Assumption 3. (Adequate Ambiguity) Let χ(α) = F 0(1,α)
F 1(1,α)

. As α → α , we have: (i) χ (α) → +∞,
and (ii) µ (α) ≥ C · χ−k (α) for some C, k > 0.

Note that χ(α) = +∞ means that F (x, α) is perfectly informative, so Assumption 3 (i) says
that perceived DGPs can be arbitrarily informative. Assumption 3 (ii) imposes a lower bound on
the right tail of second-order belief, which means that individuals believe that highly informative
DGPs are realized with adequately high probability.

Proposition 5. Suppose that Assumption 3 holds, and that ϕ is CRAA with coefficient ρ.27 There
exists ρ0 < +∞ such that an information cascade occurs P∗-almost surely if ρ > ρ0.

Proposition 5 imposes no restriction on the true DGP, so an information cascade occurs for all
DGPs—regardless of whether signals are bounded or unbounded—if there is adequate ambiguity
in Assumption 3’s sense, and if individuals are sufficiently ambiguity-averse in the CRAA sense.
Interestingly, Proposition 5 shows that an information cascade with unbounded signals is less
extreme than it appears. Recall that with MEU preferences, a cascade occurs with unbounded
signals because individuals use the perfectly informative DGP to evaluate the worst case, which
represents a very extreme case (e.g., Theorem 1). However, with smooth ambiguity preferences, a
cascade can occur in less extreme cases in which the perfectly informative DGP carries zero weight.

8.2 α-MEU Model

The occurrence of a cascade can even go beyond ambiguity aversion. This subsection considers
another extension in which individuals have α-maxmin expected utility (α−MEU) preferences
(Hurwicz, 1951; Ghirardato et al., 2004). With this class of preferences, individual i’s utility is

Vi (a) = α · inf
π∈Πi

EπU (a, θ) + (1− α) · sup
π∈Πi

EπU (a, θ) ,

27If ϕ is constant relative ambiguity aversion (CRAA), it satisfies ϕ (x) = x1−ρ

1−ρ
if ρ > 0 and ρ ̸= 1, and ϕ (x) = ln(x)

if ρ = 1.
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where α ∈ [0, 1]. Here α represents the degree of an individual’s pessimism, where α = 1

corresponds to the MEU model, and α = 0 corresponds to the max-max EU model. We have
the following proposition.

Proposition 6. All previous results under MEU preferences hold for α−MEU preferences.

Proof. It can be verified that the decision rule under α-MEU preferences is the same as that under
MEU preferences, i.e., individuals choose action 1 if λi · ri > 1 and action 0 if otherwise, so all
action dynamics are identical.

Proposition 6 implies that an information cascade can also occur when individuals are ambiguity-
loving. Suppose that individuals have max-max preferences (i.e., α = 0), then under high ambiguity,
we still have the asymmetric forces between herding and contrarian: Every action in a herd can be
interpreted as highly informative, so the best-case utility of herding can be very high; in contrast,
the best-case utility of breaking a herd cannot exceed the case where previous actions contain no
information, which can also lead to a cascade. To accommodate ambiguity-loving, a more general
statement should be that an information cascade emerges when: (i) there is sufficient ambiguity—
i.e., there are sufficiently many models, and (ii) individuals are sufficiently ambiguity-sensitive—i.e.,
their decisions are adequately influenced by the best or the worst outcomes.

Remark 5. It is worth noting that the equivalence in dynamics between MEU and α-max-min relies
crucially on the binary action space. Suppose that we have general action space, then ambiguity
attitudes can affect which actions will be taken in the end. For example, if individuals are ambiguity-
averse, the society may settle on safe actions, while if individuals are ambiguity-loving, the society
will select riskier actions.28

9 Discussion and Extensions

In this section, I summarize how social learning under ambiguous model perceptions differs from
that under alternative model setups and also discuss some extensions.

Model uncertainty vs model certainty. Previous literature predominantly focuses on social
learning with model certainty, including both learning under correct models and learning under
model misspecification. Differently, this paper introduces model uncertainty, which describe the
situations where individuals can’t pin down a specific DGP. In the paper, I allow individuals to
perceive an arbitrary model set, so this paper’s framework can encompass model certainty as
special cases. Additionally, the paper addresses the question of which social learning outcomes
remain robust under alternative model specifications. As discussed earlier, with model certainty,
the social learning outcome can depend intricately on the statistical properties of the true DGPs
and their perceptions. This paper instead establishes information cascades as the robust social

28An earlier version of this paper also shows that if there is a safe action with a constant payoff (say 1/2), and
if individuals have MEU preferences, the society will form an information cascade of this safe action almost surely.
However, a cascade of the safe action never appears with ambiguity-loving individuals.
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learning outcome when individuals have robustness concerns as in Wald (1950) and Hansen and
Sargent (2001) by considering a broad range of models and maximizing the utility in the worst-case
scenario.

Remark 6. One may wonder how results will change if we describe model uncertainty in a Bayesian
way in which individuals form a prior over models. It turns out that the social learning outcome
will depend on the properties of the prior, just as it depends on the model specification in the case
of model certainty. 29 Therefore, it is not straightforward to discuss which result is robust as all
of them are prior-dependent.

MEU vs expected utility. This paper also underscores the importance of studying non-expected
utility preferences in the context of social learning by showing that social learning outcomes
with MEU preferences can differ significantly from those with expected-utility preferences. To
emphasize the impact of MEU preferences, it is beneficial to disentangle the effects of incorrect
model perception from the effects of non-expected utility preferences. To achieve this goal, Section
7 delves into a special case of the benchmark model in which individuals face consistent ambiguity,
allowing them to maintain ambiguity and correct specifications simultaneously. We see that
under consistent ambiguity, despite the various outcomes that can arise with expected utility,
an information cascade will happen almost surely with MEU preferences, which shows that MEU
preferences itself (in contrast to the perception of incorrect models) can drive a cascade. To
gain a better understanding of the role of ambiguity attitudes in triggering cascades, the paper
further discusses smooth ambiguity preferences, wherein preferences can transition continuously
from expected utility to MEU. From this discussion, it is observed that the probability of an
information cascade approaches 1 as the degree of ambiguity aversion approaches infinity, providing
a clearer picture of the role of ambiguity attitude in social learning. To summarize the previous
discussion, the paper highlights that incorporating non-expected utility can be a promising direction
for future research in social learning.

Extensions. I also discuss the following extensions in the Supplementary Materials. First, this
paper focuses on the standard setup in which the state and action space are binary, but similar
insights can still apply in cases with multiple states and actions.30 Second, the paper assumes that
all individuals share a common model set, and I discuss an extension in which individuals hold
heterogeneous model sets. For example, some individuals may have less ambiguity than others by
considering a smaller model set. Third, the benchmark model assumes that individuals update
beliefs model-by-model, and I consider an extension in which individuals follow the α-maximum
likelihood rule as in Epstein and Schneider (2007). Lastly, the paper assumes that individuals

29For example, if signals are unbounded and the prior assigns a strictly positive probability to the true DGPs,
complete learning will occur due to a similar argument in Kalai and Lehrer (1993), but for other priors, complete
learning may not occur; similarly, when signals are bounded, the occurrence of a cascade also depends on properties
of the prior, e.g., how much weight the prior attaches to the cascading DGP.

30Arieli and Mueller-Frank (2021) extended the standard SSLM to allow for general state and action space.
Differently, they focus on correct Bayesian agents, so similar techniques cannot be applied here, which prevents this
paper from achieving similar generality.
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are certain about the network structure. I present an extension in which individuals also face
ambiguity about the network structure, meaning they do not know what their predecessors can
actually observe.

10 Related Literature

This paper contributes to the growing literature on learning under ambiguity. Most works in this
thread of literature focus on individual learning. Marinacci (2002) and Marinacci and Massari
(2019) study in an individual learning problem in terms of whether ambiguity will fade away
asymptotically. Epstein and Schneider (2007) introduce an α-maximum likelihood learning rule and
investigate a dynamic portfolio choice problem. Battigalli et al. (2019) study a learning problem
in which data are endogenously generated from an experimentation process. Fryer Jr et al. (2019)
and Chen (2022) study learning problems where individuals are biased in interpreting ambiguous
information. This paper complements the literature by investigating a social learning problem,
where informational ambiguity seems to occur very naturally. A relevant paper is by Ford et al.
(2013), who study a sequential trading model in which traders face ambiguity and have neo-additive
capacity expected utility (CEU) preferences (Chateauneuf et al., 2007). They show that ambiguity
can produce both herding and contrarian. This arises from the property that the CEU is bounded
away from 0 and 1, but the ask-bid prices can fully adjust to 0 and 1, so the discrepancy provides
room for herding and contrarian. In contrast, this paper’s result comes from a different mechanism
that employs the asymmetry between cascade and non-cascade under ambiguous information;
also, the ambiguity in the paper mainly produces herding but not contrarian. In addition to the
aforementioned applications, learning under ambiguity is also examined in recent works in decision
theory—e.g., Cheng (2022); Kovach (2021); and Tang (2022);—and experimental economics; e.g.,
De Filippis et al. (2022) and Epstein et al. (2019).

This paper is also related to the literature on social learning with misspecified models. Bohren
(2016) and Bohren and Hauser (2021) examine a sequential social learning problem in which
individuals misspecify the true model. Bohren (2016) finds that different model specifications
can lead to different learning outcomes—e.g., complete learning, incomplete learning, and cyclical
actions. Bohren and Hauser (2021) incorporate these results in a more general framework. They
find that complete learning is robust with respect to small misspecifications, which stands in
contrast to this paper’s finding that complete learning may be non-robust. The difference is driven
by their assumption that the society has a positive fraction of “autarkic agents” who only act
according to their private signals. (Frick et al., 2020a,b) also find that complete learning is not
robust but in different settings. Specifically, Frick et al. (2020a) consider a social learning problem
in which the state space is continuous and individuals with different preferences randomly meet with
each other. Frick et al. (2020b) propose a local martingale-based approach and show the fragility
of sequential social learning in an environment in which signals are bounded and individuals have
heterogeneous risk preferences. Arieli et al. (2023) investigate the efficiency of sequential social

26



learning with misspecified model perceptions. Compared with previous papers on misspecified
social learning, this paper assumes that individuals face model uncertainty and entertain a set of
models; besides, this paper studies social learning with non-expected utility preferences.

This paper also connects to the literature on social learning with non-Bayesian agents. The
literature shows that incorrect learning can emerge if individuals follow some naive learning rules—
for example, when they do not fully account for predecessors’ inferences (Eyster and Rabin, 2010),
when they follow a coarse inference rule (Guarino and Jehiel, 2013), or when they follow some
average rule to aggregate the opinions from others (DeMarzo et al., 2003; Molavi et al., 2018;
Dasaratha and He, 2020). In this paper, individuals are not naive, and they understand how others
make inferences. The paper’s deviation from the Bayesian paradigm is mainly created by ambiguity
and ambiguity preferences.

11 Conclusion

This paper investigates a sequential social learning problem in which individuals face ambiguity
regarding other people’s DGPs. In contrast to previous findings where various learning outcomes
can emerge depending on modeling details, this paper establishes information cascades as the only
robust outcome under ambiguity. Specifically, under sufficient ambiguity, an information cascade
almost surely occurs without regard to many details of the learning environment, such as the
statistical properties of the actual signal-generating processes or the presence of a particular type
of model specification. Interestingly, this paper further demonstrates that some results featuring
non-cascades are fragile when subjected to small perturbations in ambiguity. The paper focuses on
the sequential social learning model, but it would also be intriguing to investigate how individuals
learn in other environments, such as general networks, repeated interactions, and situations with
heterogeneous preferences, etc.
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A Proofs

A.1 Proof of Theorem 1

I first present some useful results below.

Lemma 2. For all normalized DGP, F , we have

(1) F 0 (r) > F 1 (r) except when both are equal to 0 or 1;

(2) F 0(r)
F 1(r)

≥ 1
r and 1−F 1( 1

r )
1−F 0( 1

r )
≥ 1

r for r ∈ (0,∞) (strictly when F 1 (r) > 0 and F 0
(
1
r

)
< 1);

(3) F 0(r)
F 1(r)

and 1−F 1( 1
r )

1−F 0( 1
r )

are weakly decreasing (strictly on supp (F )).

Proof. See Lemma A.1 in Smith and Sørensen (2000).

Lemma 3. Suppose that γ < ∞, and that for all ri ∈
(

1
γ , γ
)
, there exists some β > 1 such that

ri+1

ri

≥ β if ai = 1

≤ 1/β if ai = 0
,

then an information cascade occurs P∗-almost surely.

Proof. Suppose that for all ri ∈
(

1
γ , γ
)
, the ratio ri

ri+1
is bounded away from 1. Then, there

exists some K < ∞ such that K consecutive action θ will bring ri into the cascade set Cθ and
trigger an information cascade of action θ. Specifically, when ri ≥ 1, K consecutive signals
λi, λi+1, ..., λi+K−1 > 1 lead to ai = ai+1 = ... = ai+K−1 = 1 and lead to a cascade of action
1. Also notice that

P∗ (λi > 1)

1− P∗ (λi > 1)
=

1− F
0
(1)

F
0
(1)

=
F

1
(1)

F
0
(1)

=

∫ 1
1/γ xdF

0
(x)∫ 1

1/γ dF
0
(x)

≥ 1

γ
⇒ P∗ (λi > 1) ≥ 1

1 + γ
, (7)

where the second equality comes from the symmetry of F , and the third equality comes from the
definition of normalized signal x = dF

1
(x)

dF
0
(x)

. As a result, we have

P∗ (Cascade|ri ≥ 1) ≥ P∗ (λi, λi+1, ..., λi+K−1 > 1|ri ≥ 1) ≥
(

1

1 + γ

)K

> 0, (8)

and similarly,

P∗ (Cascade|ri < 1) ≥
(

γ

1 + γ

)K

> 0. (9)

Levy’s 0-1 Law shows that as i → ∞, we have

P∗ (Cascade|hi) → P∗ (Cascade|h∞) = 1Cascade ∈ {0, 1} P∗-almost surely.

31



(8) and (9) imply that P∗ (Cascade|hi) >
(

1
1+γ

)K
> 0 for all i, so we must have 1Cascade = 1

P∗-almost surely—i.e., a cascade almost surely happens.

Proof of Theorem 1

Now we are ready to prove Theorem 1. We first show that the dynamics of the average likelihood
ratio satisfy the following condition.

Lemma 4. When F0 = F , for all ri ∈
(

1
γ , γ
)
, we have

ri+1

ri

≥ √
γ if ai = 1

≤ 1√
γ if ai = 0

.

Proof. If ai = 1, we have

ri+1 =

√√√√√supFi∈F0

1− F 1
i

(
1
ri

)
1− F 0

i

(
1
ri

) × infFi∈F0

1− F 1
i

(
1
ri

)
1− F 0

i

(
1
ri

) × ri.

Let Fγ be the DGP such that supp (Fγ) =
{
γ, 1γ

}
, i.e., the “most informative” DGP that only

generates signals with the highest and the lowest likelihood ratios. For all ri ∈
(

1
γ , γ
)
, we have

supFi∈F0

1− F 1
i

(
1
ri

)
1− F 0

i

(
1
ri

) ≥
1− F 1

γ

(
1
ri

)
1− F 0

γ

(
1
ri

) = γ. (10)

From Lemma 2 (1), we know that for all ri ∈
(

1
γ , γ
)
,

infFi∈F0

1− F 1
i

(
1
ri

)
1− F 0

i

(
1
ri

) ≥ 1. (11)

Combining (10) and (11), we obtain ri+1 ≥
√
γ×ri for all ri ∈

(
1
γ , γ
)
, when ai = 1. The discussion

of ai = 0 is symmetric.

It can be seen that Lemma 4 then implies Theorem 1 immediately. This is because if signals

are unbounded, i.e., γ = ∞, Lemma 4 implies that r1 =

∞ if a1 = 1

0 if a1 = 0
, so a cascade occurs

immediately after the first action. Suppose signals are bounded, then Lemma 4 satisfies the
condition in Lemma 3, so an information cascade occurs almost surely.

A.2 Proof of Theorem 2
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Proof. Proof of Theorem 2 (1): Suppose that there is F ∈ F0, which is discrete at γ. Denote
p = F 0

(
1
γ

)
> 0, which is the probability that F 0 puts on 1

γ . Suppose that ai = 1, for ri ∈
(

1
γ , γ
)
,

we have:

li+1 = li × sup
Fi∈F0

1− F 1
i

(
1
ri

)
1− F 0

i

(
1
ri

) ≥ li ×
1− F 1

(
1
ri

)
1− F 0

(
1
ri

) ≥ li ·

[
lim
r→γ

1− F 1
(
1
r

)
1− F 0

(
1
r

)] = li ·
1− 1

γ · p
1− p

, (12)

where the second inequality comes from Property (3) in Lemma 2, and the last equality comes
from the discreteness of signals. Also, we have li+1 ≥ li, so

ri+1 ≥

√
1− 1

γ · p
1− p

ri ≡ β × ri.

Symmetrically, when ai = 0, we have ri+1 ≤ 1
β ×ri. From Lemma 3, an information cascade occurs

P∗-almost surely.

Proof of Theorem 2 (2): Suppose that there exists some F ∈ F0 such that F 1 is continuously
differentiable on (γ − ε, γ) with f1 (γ) > 2

γ−1 . When F is discrete at γ, an information cascade
occurs almost surely, as implied by condition (1). I thus focus on the case in which F is continuous
at γ. Suppose that ai = 1; we have

ri+1 = ri ·

√√√√√ sup
Fi∈F0

1− F 1
i

(
1
ri

)
1− F 0

i

(
1
ri

) · inf
Fi∈F0

1− F 1
i

(
1
ri

)
1− F 0

i

(
1
ri

) ≥ ri ·

√√√√√1− F 1
(

1
ri

)
1− F 0

(
1
ri

) ≡ I (ri) .

Let I ′ (γ) ≡ limδ→0 I
′ (γ − δ) and f0 denote the density functioon of F 0; then we have

I ′ (γ) = γ ·
[
1

γ
+

1

2

(
f0 (γ)− f1 (γ)

)]
= 1−

(
γ − 1

2

)
f1 (γ) < 0,

where the second equality comes from f0 (γ) = 1
γ f

1 (γ). Because F 1 is continuously differentiable
on (γ − ε, γ), there exists some ε0 > 0 such that for all r ∈ [γ − ε0, γ), I ′ (r) < 0. Since I (γ) = γ,
we have I (r) ≥ γ for all r ∈ [γ − ε0, γ]. For all ri ∈

(
1

γ−ε0
, γ − ε0

)
, if ai = 1, we have

ri+1

ri
≥

√√√√√1− F 1
(

1
ri

)
1− F 0

(
1
ri

) ≥

√√√√√1− F 1
(

1
γ−ε0

)
1− F 0

(
1

γ−ε0

) > 1,

so there exists a K < ∞ such that after K action 1, we have ri ≥ γ − ε0. Also note that if
ri ∈ [γ − ε0, γ] and ai = 1, we have ri+1 ≥ I (ri) ≥ γ, so K + 1 consecutive action 1 will trigger a
cascade of action 1. Similarly, K+1 consecutive action 0 will trigger a cascade of action 0. Applying
the proof of Lemma 3 again, we can show that ri will enter the cascade set almost surely.
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A.3 Proof of Theorem 3

A.3.1 Local Stability under Ambiguity

Definition 5. State 0 (or state 1) is locally stable if there exists some r ∈ R++ (or R ∈ R++) and
ε > 0 such that P∗

r0 (ri → 0) > ε (or P∗
r0 (ri → ∞) > ε) for all prior set Π0 with r0 < r (or r0 > R).

Here P∗
r0 denotes the true probability measure conditional on the average prior likelihood ratio’s

being r0. Roughly, state θ is locally stable if posteriors will converge to δθ with a strictly positive
probability when priors are close to δθ. We have the following results.

Lemma 5. Suppose that F0 contains a DGP with unbounded signals. Then, a herd of action 0

(or 1) occurs if and only if ri → 0 (or ri → ∞).

Proof. Due to the symmetry, I only prove the result for the herd of action 1. First, suppose that
ri → ∞; then we must have a herd of action 1, because if an action 0 is taken by an individual i,
then

ri+1 = ri ×

√
sup
Fi∈F0

F 1
i (1/ri)

F 0
i (1/ri)

× inf
Fi∈F0

F 1
i (1/ri)

F 0
i (1/ri)

≤ ri ×
√

1

ri
× 1

ri
= 1,

which contradicts ri → ∞. Second, suppose that a herd of action 1 occurs, then

ri+1 = ri ×

√
sup
Fi∈F0

1− F 1
i (1/ri)

1− F 0
i (1/ri)

× inf
Fi∈F0

1− F 1
i (1/ri)

1− F 0
i (1/ri)

≥ ri,

so {ri} is an increasing sequence and has a limit in R∪ {+∞}. If ri does not diverge to infinity, it
must converge to some R < ∞. Let F be the unbounded DGP that F0 contains; then

ri+1 ≥ ri ×

√
1− F 1 (1/ri)

1− F 0 (1/ri)
. (13)

Taking the limit on both sides of (13), we obtain R ≥
√

1−F 1(1/R)
1−F 0(1/R)

×R, so
√

1−F 1(1/R)
1−F 0(1/R)

≤ 1. Since

F has unbounded signals, Lemma 2 (1) implies that
√

1−F 1(1/R)
1−F 0(1/R)

> 1, which is a contradiction. As
a consequence, ri → ∞.

Lemma 6. Suppose that F0 contains a DGP with unbounded signals. If both 0 and 1 are locally
stable, then (i) both correct and incorrect herding occur with a P∗-strictly positive probability and
(ii) herding occurs P∗-almost surely.

Proof. (i) From the definition of local stability, Lemma 5, and the fact that {ri} is a Markov process,
we know that both correct and incorrect herding occur with a strictly positive probability when ri is
sufficiently large or small—that is, ri ∈ C = {ri < r} ∪ {ri > R} for some r,R ∈ (0,+∞). Outside
of C, ri is bounded away from 0 and +∞, so there exists some K < ∞ such that K identical
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actions can bring ri into C.31 This further implies that {ri → 0} and {ri → ∞} both occur with
a strictly positive probability—i.e., both types of herding occur with a positive probability. (ii)
Denote by H = {ri → 0} ∪ {ri → ∞}, which denotes the event of herding by Lemma 5. Levy’s
0-1 Law implies that P∗ (H|hi) → P∗ (H|h∞) = 1H ∈ {0, 1}. The arguments in (i) imply that we
can find a constant δ > 0 such that for all possible history hi, P∗ (H|hi) > δ, so 1H = 1 almost
surely—i.e., herding almost surely occurs.

A.3.2 Formal Proof of Theorem 3

Lemma 7.
√
GF (1/x) =

√
1−F 1(x)
1−F 0(x)

∼ 1 + 1
2F

0 (x) as x → 0.

Proof. Rosenberg and Vieille (2019) show that

1− F 1 (x)

1− F 0 (x)
= 1 + F 0 (x) + o

(
F 0 (x)

)
,

or equivalently, 1−F 1(x)
1−F 0(x)

∼ 1 + F 0 (x), so
√

1−F 1(x)
1−F 0(x)

∼
√
1 + F 0 (x) = 1 + 1

2F
0 (x) + o

(
F 0 (x)

)
,

which proves the lemma.

Lemma 8. Under the conditions of Theorem 3, state 1 is locally stable.

Proof. We want to show that there exists some R < ∞ such that for all r0 ≥ R, the probability of
an action-1 herd is greater than some ε > 0. Let Hθ denote the event in which ai = θ for all i, i.e.,
an action-θ herd. We have

P∗
r0 (H1) = lim

i→∞
P0
r0 (a1 = a2 = ...ai = 1) =

∞∏
i=1

[
1− F

0
i

(
1

ri

)]
≥

∞∏
i=1

[
1− a×

(
1

ri

)α]
, (14)

where ri represents the average public likelihood ratio after hi = (1, 1, ..., 1). Recall that

ri+1 = ri ×

√
sup
Fi∈F0

1− F 1
i (1/ri)

1− F 0
i (1/ri)

× inf
Fi∈F0

1− F 1
i (1/ri)

1− F 0
i (1/ri)

≥ ri ×

√
1− F 1 (1/ri)

1− F 0 (1/ri)
,

31Suppose that ri ∈ [r,R]. Let F be any unbounded DGP contained in F0. Then when ai = 0, we have

ri+1 ≤ ri ×
√

F1(1/ri)

F0(1/ri)
≤ ri ×

√
F1(1/r)

F0(1/r)
. Because r ∈ (0,∞), we have ri+1/ri ≤

√
F1(1/r)

F0(1/r)
≡ β < 1, so after

K =
⌈
log

r/R
β

⌉
+ 1 consecutive action 0s, we have ri+K < r. Similarly, K consecutive action 1s will result in

ri+K > R.
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where F denotes the DGP in F0 such that xp = o
(
F 0 (x)

)
. Let q ∈ (p, α), then we have

lim
r→∞

√
1−F 1(1/r)
1−F 0(1/r)

− 1(
1 + 1

rq

)1/q − 1
= lim

r→∞

√
1−F 1(1/r)
1−F 0(1/r)

− 1

1
rq

× lim
r→∞

1
rq(

1 + 1
rq

)1/q − 1

= lim
r→∞

1
2F

0 (1/r)
1
rq

× lim
r→∞

1
rq(

1 + 1
rq

)1/q − 1
(15)

> lim
r→∞

1
2 (1/r)

p

1
rq

× q = ∞,

where (15) follows from Lemma 7. From Lemma 5, we know that {ri} is increasing during an
action-1 herd, so ri ≥ r0 for all i. Therefore, when r0 is sufficiently large, we have√

1− F 1 (1/ri)

1− F 0 (1/ri)
≥
(
1 +

1

rqi

)1/q

,

for all i ≥ 1, which further implies that

ri+1 ≥ ri ×

√
1− F 1 (1/ri)

1− F 0 (1/ri)
≥ ri ×

(
1 +

1

rqi

)1/q

= (rqi + 1)
1/q

.

After iterations, we can obtain

ri ≥ (rq0 + i)
1/q

, ∀i ≥ 1. (16)

After substituting (16) into (14), we know that for all r0 ≥ R with R sufficiently large,

P∗
r0 (H1) ≥

∞∏
i=1

[
1− a×

(
1

ri

)α]
≥

∞∏
i=1

[
1− a× 1

(rq0 + i)
α/q

]
≥

∞∏
i=1

[
1− a× 1

(Rq + i)α/q

]
.

Here, we choose R to be sufficiently large such that 1 − a × 1
Rα > 0, so 1 − a × 1

(Rq+i)α/q ∈ (0, 1)

for all i ≥ 1. The infinite product
∏∞

i=1

[
1− a× 1

(Rq+i)α/q

]
> 0 if and only if the infinite series∑

a× 1

(Rq+i)α/q < ∞. Since q < α, we know that
∑

a× 1

(Rq+i)α/q < ∞, so

P∗
r0 (H1) ≥

∞∏
i=1

[
1− a× 1

(Rq + i)α/q

]
≡ ε > 0 for all r0 ≥ R,

which establishes the local stability of state 1.

Lemma 9. Under the conditions of Theorem 3, state 0 is locally stable.

Proof. The case for state 0 is symmetric to Lemma 8. Let ri denote the average likelihood ratio
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after hi = (0, ..., 0). From symmetry, we have

P∗
r0 (H0) =

∞∏
i=1

F 0

(
1

ri

)
=

∞∏
i=1

[
1− F 1 (ri)

]
≥

∞∏
i=1

[
1− F 0 (ri)

]
= P∗

1/r0
(H1) ,

which says that the probability of a correct herd with prior r0 is higher than that of an incorrect
herd with prior 1/r0. From Lemma 8, there exists R such that P∗

1/r0
(H1) ≥ ε > 0 for all 1/r0 > R.

So we have P∗
r0 (H0) ≥ P∗

1/r0
(H1) ≥ ε > 0 for all r0 < 1/R, which establishes the local stability of

state 0.

Combining Lemmas 6 to 9, we know that herding occurs almost surely, and an incorrect herd
occurs with a strictly positive probability, so Theorem 3 is proved.

A.4 Proof of Proposition 3

The proof can be decomposed into the following lemmas.

Lemma 10. Proposition 3 holds if

∞∑
t=1

F
0
(
1/ (βt+ 1)1/α

)
< ∞,

for some β > 0, where F
θ
(x) =

∫ α
α F (x, α)µ(α)dα.

Proof. From the discussion in Lemma 8, we know that an incorrect herd occurs with a strictly
positive probability (i.e., state 1 is locally stable) if

∑∞
i=1 F

0
(1/ri) < ∞, where ri represents the

average public likelihood ratio during the action-1 herd. We also know that: (i) ri → +∞ as
i → ∞, and (ii) for all i,

ri+1 ≥

√
1− F 1 (1/ri, α)

1− F 0 (1/ri, α)
× ri =

√
Gα (ri)× ri,

and (iii)
√

Gα (r) ∼ 1 + 1
2F

0 (1/r) ∼ 1 + 1
2C (α)× 1

rα as r → ∞. Let β = C(α)α
3 , and we have

lim
r→∞

√
Gα (r)− 1(

1 + β
rα

)1/α
− 1

= lim
r→∞

√
Gα (r)− 1

β
rα

× lim
r→∞

β
rα(

1 + β
rα

)1/α
− 1

=
1
2C (α)× 1

rα

C(α)α
3 × 1

rα

× α =
3

2
> 1.

So, for sufficiently large I, we have
√

Gα (ri) ≥
(
1 + β

r
α
i

)1/α
for all i ≥ I, which implies that rI+t ≥

(βt+ 1)1/α for all t ≥ 1. Note that F 0
(x) is an increasing function, so to show

∑∞
i=1 F

0
(1/ri) < ∞,
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it suffices to show that
∑∞

t=1 F
0
(
1/ (βt+ 1)1/α

)
< ∞. Similar to Lemma 9, the local stability of

state 1 implies that of state 0, so we can further show that herding occurs almost surely.

Lemma 11.
∑∞

t=1 F
0
(
1/ (βt+ 1)1/α

)
< ∞.

Proof. Under the assumption that µ (α) ≤ C × (α− α)k as α → α, there exists some ε > 0 such
that

F
0
(x) ≤ C ×

∫ α+2ε

α
F 0 (x, α) (α− α)k dα+

∫ α

α+2ε
F 0 (x, α)µ (α) dα.

Since F 0 (x, α) ∼ C (α)× xα, to establish the convergence of
∑∞

t=1 F
0
(
1/ (βt+ 1)1/α

)
, it suffices

to establish the convergence of the following two infinite series:

S1 =
∞∑
t=1

[∫ α+2ε

α

(α− α)k

(βt+ 1)α/α
dα

]
and S2 =

∞∑
t=1

[∫ α

α+2ε

1

(βt+ 1)α/α
µ (α) dα

]
.

(i) The convergence of S2. Let’s first establish the convergence of S2. First note that

lim
t→∞

∫ α
α+2ε

1

(βt+1)α/αµ (α) dα

1

(βt+1)
α+ε
α

= lim
t→∞

∫ α

α+2ε
(βt+ 1)

−α−(α+ε)
α µ (α) dα

=

∫ α

α+2ε
lim
t→∞

(βt+ 1)
−α−(α+ε)

α µ (α) dα

= 0.

where the second equality is implied by the dominated convergence theorem (since (βt+ 1)
−α−(α+ε)

α ≤
1 for all α ∈ [α+ 2ε, α]). Therefore, we can find some T > ∞ such that

∞∑
t≥T

[∫ α

α+2ε

1

(βt+ 1)α/α
µ (α) dα

]
<

∞∑
t≥T

1

(βt+ 1)
α+ε
α

.

Since α+ε
α > 1, we know that

∑∞
t≥T

1

(βt+1)
α+ε
α

converges, which establishes the convergence of S2.

(ii) The convergence of S1. Let’s then show the convergence of S1. Let x = (βt+ 1)−1/α and
consider the integral I (x) =

∫ α
α xα × (α− α)k dα. It can be verified that

I (x) =
−xα

(− log x)k+1
Γ (k + 1,− log (x)× (α− α))︸ ︷︷ ︸

I1(x)

+
xα

(− log x)k+1
Γ (k + 1)︸ ︷︷ ︸

I2(x)

,

where Γ (m,n) denotes the upper incomplete Gamma function, i.e., Γ (m,n) =
∫∞
n tm−1 × e−tdt.

The gamma function, Γ (m), corresponds to the special case where n = 0. To show the convergence
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of S1, we need to show the convergence of

I1 =
∞∑
t=1

I1

(
1

(βt+ 1)1/α

)
and I2 =

∞∑
t=1

I2

(
1

(βt+ 1)1/α

)
.

(ii.a) The convergence of I2 is straightforward, since

I2 = αk+1Γ (k + 1)×
∞∑
t=1

1

(βt+ 1)× logk+1 (βt+ 1)
< ∞.

This employs the fact that
∑ 1

n×logs n converges if s > 1 (and diverges when s ≤ 1).
(ii.b) Let’s then investigate the convergence of I1. The idea is to bound the gamma function

using a simpler function −xϵ log (x). First, note that when ϵ > 0 is sufficiently small, Γ (k + 1,− log (x)× (α− α))

is an infinitesimal of higher order than xϵ log (x).

lim
x→0

Γ (k + 1,− log (x)× (α− α))

−xϵ log (x)
= lim

x→0

∫∞
− log(x)×(α−α) u

k × e−udu

−xϵ log (x)

= lim
x→0

(− log x)k (α− α)k+1 xα−α−1

−xϵ−1 − ϵxϵ−1 log x

= lim
x→0

(− log x)k (α− α)k+1 xα−α−ϵ

−1− ϵ log x

= 0,

where the second equality comes from L’Hopital’s rule. I define an alternative infinite series as
below

I1 (x) =
xα

(− log x)k+1
xϵ log (x) and I1 =

∞∑
t=1

I1

(
1

(βt+ 1)1/α

)
.

Since Γ (k + 1,− log (x)× (α− α)) is an infinitesimal of higher order than xϵ log (x), we know that
I1 converges if I1 converges. Notice that

I1 =
∞∑
t=1

αk

(βt+ 1)
α+ϵ
α × logk (βt+ 1)

< ∞,

where the convergence comes from the fact that
∑ 1

ns1×logk n
converges if s1 > 1. Therefore, I1

converges, so does S1.

A.5 Proof of Proposition 4

Proof. Since ϕ is strictly increasing, the decision rule is monotonic in λi, so there exists a cutoff
rϕ(hi) (I denote it by rϕi henceforth) such that individual i will choose action 1 if λi · rϕi > 1 and
action 0 if otherwise. Note that the smooth ambiguity preference approaches that the max-min
preference as ρ

ϕ
→ +∞ (see Proposition 3 in Klibanoff et al. (2005)), and the cutoff value under
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the max-min is ri, where ri represents the average likelihood ratio. So, we have |rϕi − ri| → 0 as
ρ
ϕ
→ +∞, which further implies that |rϕi+1/r

ϕ
i − ri+1/ri| → 0 as ρ

ϕ
→ +∞. As a consequence, for

all ϵ > 0 and I < ∞, there exists some ρ0 < ∞ such that for all ϕ that satisfies ρ
ϕ
> ρ0, we have

|rϕi+1/r
ϕ
i − ri+1/ri| < ϵ for all i ≤ I. (17)

Suppose that F0 satisfies Theorem 2 (i) by containing a DGP discrete at γ.32 From the proof of
Theorem 2 (i), we know that the average likelihood ratios satisfy

ri+1/ri

≥ β ai = 1

≤ 1/β ai = 0
when ri ∈ (1/γ, γ). (18)

(17) and (18) imply that for all ϕ satisfying ρ
ϕ
> ρ0 and when i ≤ I, we have

rϕi+1/r
ϕ
i

≥ β − ϵ ai = 1

≤ 1
β−ϵ ai = 0

when rϕi ∈ (1/γ, γ). (19)

So an information cascade will be triggered after at most K ≡
⌈
logγβ−ϵ

⌉
+ 1 identical actions. Let

Ni denote the event that rϕi ∈
(

1
γ , γ
)
, then we have

P∗ (Ni+K)

P∗ (Ni)
=

P∗ (Ni+K ∩Ni)

P∗ (Ni)
= P∗ (Ni+K |Ni) ≤ 1−

(
1

1 + γ

)K

≡ q < 1,

where the first equality comes from the fact that Ni+K ⊂ Ni, and the last inequality comes from
the proof of Theorem 1. Therefore, the expected number of individuals before I who do not face a
cascade is

E∗

∑
i≤I

1Ni

 =
∑
i≤I

P∗ (Ni) ≤ P∗ (N1)×
(
1 + q + ...+ qI−1

)
<

1

1− q
< ∞.

As a consequence,

P∗ (N1 = ... = NI = 1)× I ≤ E∗

∑
i≤I

1Ni

 ≤ 1

1− q
⇒ P∗ (N1 = ... = NI = 1) ≤ 1

(1− q)I
.

It means that the probability of no cascade before individual I is less than 1
(1−q)I , which implies that

the probability of an information cascade is greater than 1 − 1
(1−q)I . When I becomes arbitrarily

large, the probability of a cascade can be arbitrarily close to 1.
32The proof for F0 satisfies Theorem 2 (ii) is almost identical. The only change is that (18) and (19) are satisfied

when ri and rϕi are in
(

1
γ−ε0

, γ − ε0
)
.
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A.6 Proof of Proposition 5

Proof. Suppose that a1 = 1. Suppose that individual 2 received a signal λ2. We first note that

Pα1 (θ = 0|a1, λ2) =
1− F 0 (1, α1)

1− F 0 (1, α1) + λ2 (1− F 1 (1, α1))
=

F 1 (1, α1)

F 1 (1, α1) + λ2F 0 (1, α1)
,

Pα1 (θ = 1|a1, λ2) =
λ2F

0 (1, α1)

F 1 (1, α1) + λ2F 0 (1, α1)
,

where Pα1 denotes individual 2’s posterior when individual 1’s DGP is F (·, α1). So, individual 2’s
utility of choosing action 0 is

V2 (0) =

[∫ α

α
P1−ρ
α1

(θ = 0|a1, λ2)µ (α1) dα1

] 1
1−ρ

=

[∫ α

α

[
1

1 + λ2χ (α1)

]1−ρ

µ (α1) dα1

] 1
1−ρ

.

Suppose that ρ > 1. By Assumption 3, there exists some R < α such that

V2 (0) ≤

[∫ R

α

[
1

1 + λ2χ (α1)

]1−ρ

µ (α1) dα1 +

∫ α

R

[
1

1 + λ2χ (α1)

]1−ρ

C · χ−k (α1) dα1

] 1
1−ρ

≤

[∫ R

α

[
1

1 + λ2χ (α1)

]1−ρ

µ (α1) dα1 + C ×
∫ α

R

[1 + λ2χ (α1)]
ρ−1

χk (α1)
dα1

] 1
1−ρ

.

Note that if ρ > k + 1, we have∫ α

R

[1 + λ2χ (α1)]
ρ−1

χk (α1)
dα1 ≥

∫ α

R
λρ−1
2 · χρ−k−1 (α1) dα1 = +∞,

so V2 (0) = 0. The utility of action 1

V2 (1) =

[∫ α

α

[
λ2χ (α1)

1 + λ2χ (α1)

]1−ρ

µ (α1) dα1

] 1
1−ρ

≥ λ2

λ2 + 1
> 0 = V2(0),

so individual 2 will choose to follow the herd regardless of her private signal, i.e., an information
cascade occurs almost surely.
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